• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LI Lan, WANG Hou-ling, ZHAO Lin, ZHAO Ying, LI Hui-guang, XIA Xin-li, YIN Wei-lun. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.[J]. Journal of Beijing Forestry University, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461
Citation: LI Lan, WANG Hou-ling, ZHAO Lin, ZHAO Ying, LI Hui-guang, XIA Xin-li, YIN Wei-lun. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.[J]. Journal of Beijing Forestry University, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461

Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.

More Information
  • Received Date: December 24, 2014
  • In order to study the function of miR473a in Populus euphratica, we cloned the precursor of miR473a, Pre-Peu-miR473a, and used floral dip method to transform miR473a into Arabidopsis thaliana. Using PCR and histochemical staining of β-glucuronidase (GUS) detection methods, we obtained the CaMV35S:miR473a transgenic plants. Then we validated the growth status and physiological indexes of transgenic plants and wild-type plants under hypertonic environment simulated by D-mannitol and natural soil drought conditions. The results indicated that the miR473a precursor has a length of 100 base pair, sharing 100% homology with miR473a homologue in Populus trichocarpa, and forming perfect secondary stem loop structure. Compared with wild-type A. thaliana, the transgenic plants exhibited higher germination rate, longer root length,and better growth conditions under osmotic stress (200 mmol/L D-mannitol); In soil drought condition, the plant height, relative water content (RWC) and maximum photosynthetic efficiency of transgenic plants were all significantly higher, 10%, than that of the wild type A. thaliana (P0.05). The semi-quantitative PCR results showed that Peu-miR473a gene is involved in up-regulation in P. euphratica under drought stress. The putative target genes in Populus Potri. 012G093900, Potri.007G100200, Potri.009G165300 and Potri.004G204400 are down-regulated by drought stress. Expressions of the potential target genes in A. thaliana AT1G24530, AT5G45000, AT5G46070 and AT3G52950 were all decreased in transgenic plants, indicating that they may be target-regulated by miR473a gene. Our study suggests that miR473a gene plays a role in plant drought tolerance by regulating the plants’ ability to resist dehydration and drought under stress.
  • [1]
    MA H S, XIA X L, YIN W L. Constructing cDNA-AFLP reaction system of abiotic stress study for Populus euphratica[J]. Journal of Beijing Forestry University, 2010 (5): 34-40.
    [1]
    GRIES D, ZENG F, FOETZKI A, et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant, Cell Environment, 2003, 26(5): 725-736.
    [2]
    CHEN J, XIA X, YIN W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 378(3): 483-487.
    [2]
    MA H S, XIA X L, YIN W L. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10.
    [3]
    QIN Y R, XIA X L, YIN W L. Expression determination of miR169g under dehydration and high salinity stress in Populus euphratica leaves by real-time quantitative PCR[J]. Modern Instruments, 2011, 17(3): 28-30.
    [3]
    马洪双, 夏新莉, 尹伟伦. 建立胡杨抗逆研究的cDNA-AFLP反应体系[J]. 北京林业大学学报, 2010, 32 (5): 34-40.
    [4]
    马洪双, 夏新莉, 尹伟伦. 胡杨SCL7基因及其启动子片段的克隆与分析[J]. 北京林业大学学报, 2011, 33(1): 1-10.
    [4]
    DUAN Z X, QIN Y R, XIA X L, et al. Overexpression of Populus euphratica peu-MIR156j gene enhancing salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2012, 34(6): 1-7.
    [5]
    覃玉蓉, 夏新莉, 尹伟伦. 实时荧光定量PCR检测miR169g在脱水与高盐胁迫下胡杨叶中的表达[J]. 现代仪器, 2011, 17(3): 28-30.
    [5]
    ZHAO L, YANG Y, WEN C J. Stem-loop real-time quantitative PCR for quantification of miRNA-421 by specific primers[J]. Journal of Nanjing Normal University: Natural Science, 2012, 35(2): 83-88.
    [6]
    LI H S. The theories and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2006.
    [6]
    段中鑫, 覃玉蓉, 夏新莉, 等. 超量表达胡杨peu-MIR156j基因增强拟南芥耐盐性[J]. 北京林业大学学报, 2012, 34(6): 1-7.
    [7]
    YAN D H, FENNING T, TANG S, et al. Genome-wide transcriptional response of Populus euphratica to long-term drought stress[J]. Plant Science, 2012, 195: 24-35.
    [8]
    WANG H L, CHEN J, TIAN Q, et al. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR[J]. Physiologia Plantarum, 2014, 152(3):529-545.
    [9]
    LU S, SUN Y H, SHI R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. The Plant Cell Online, 2005, 17(8): 2186-2203.
    [10]
    NI Z, HU Z, JIANG Q, et al. Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 330-335.
    [11]
    ZHOU M, LI D, LI Z, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiology, 2013, 161(3): 1375-1391.
    [12]
    LU S, LI Q, WEI H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10848-10853.
    [13]
    LI B, YIN W, XIA X. Identification of microRNAs and their targets from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 388(2): 272-277.
    [14]
    LI B, QIN Y, DUAN H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experimental Botany, 2011, 62(11): 3765-3779.
    [15]
    SI J, ZHOU T, BO W, et al. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing[J]. BMC Genetics, 2014, 15(Suppl.1): S6.
    [16]
    FANG Y, XIE K, XIONG L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135.
    [17]
    WANG W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.
    [18]
    CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 551-560.
    [19]
    MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
    [20]
    LI Z, BALDWN C M, HU Q, et al. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)[J]. Plant, Cell Environment, 2010, 33(2): 272-289.
    [21]
    SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221-227.
    [22]
    NAG A, KING S, JACK T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22534-22539.
    [23]
    RAO G, SUI J, ZENG Y, et al. De Novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana[J]. PloS One, 2014, 9(10): e109122.
    [24]
    BARTEL D P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
    [25]
    VOINNET O. Origin, biogenesis, and activity of plant microRNAs[J]. Cell, 2009, 136(4): 669-687.
    [26]
    SHEN J, XING T, YUAN H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions[J]. PLoS One, 2013, 8(10): e77047.
    [27]
    HIRSCH S, OLDROYD G E. GRAS-domain transcription factors that regulate plant development[J]. Plant Signal Behavior, 2009, 4(8): 698-700.
    [28]
    ZHANG D, IYER L M, ARAVIND L. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms[J]. Bioinformatics, 2012, 28(19): 2407-2411.
    [29]
    SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949.
    [30]
    MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010,61: 4011-4019.
    [31]
    SHUAI P, LIANG D, ZHANG Z, et al. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis[J]. BMC Genomics, 2013, 14(1): 233.
    [32]
    ZHANG X, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646.
    [33]
    赵丽, 杨洋, 温传俊. 茎-环RT-PCR法定量miRNA-421的引物设计[J]. 南京师范大学学报: 自然科学版, 2012, 35(2): 83-88.
    [34]
    SHI H, YE T, ZHU J K, et al. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(15): 4119-4131.
    [35]
    李和生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2006.
    [36]
    CAO X, BARLOWE C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes[J]. The Journal of Cell Biology, 2000, 149(1): 55-66.
    [37]
    ZHU Q H, FAN L, LIU Y, et al. MiR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton[J]. PLoS One, 2013, 8(12): e84390.
    [38]
    ZHANG C, LIU L, WANG X, et al. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans[J]. Theoretical and applied genetics, 2014, 127: 1353-1364.
    [39]
    OSTLER N, BRITZEN-LAURENT N, LIEBL A, et al. Gamma interferon-induced guanylate-binding protein 1 is a novel actin cytoskeleton remodeling factor[J]. Molecular and Cellular Biology, 2014, 34(2): 196-209.
    [40]
    ZHU Z X, CAO Y C, CAO W J, et al. Recent progress in interferon induced protein GBP1 research[J]. Chinese Journal of Virology, 2014, 30(4): 456-462.
    [41]
    LU S, SUN Y H, CHIANG V L. Stress-responsive microRNAs in Populus[J]. The Plant Journal, 2008, 55(1): 131-151.
    [42]
    LU X Y, HUANG X L. Plant miRNAs and abiotic stress responses[J]. Biochemical and Biophysical Research Communications, 2008, 368(3): 458-462.
    [43]
    SHAIK R, RAMAKRISHNA W. Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice[J]. PLoS One, 2012, 7(11): e49331.
    [44]
    YIN F, GAO J, LIU M, et al. Genome-wide analysis of Water-stress-responsive microRNA expression profile in tobacco roots[J]. Functional Integrative Genomics, 2014, 14(2): 319-332.
    [45]
    NANJO T, KOBAYASHI M, YOSHIBA Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana[J]. The Plant Journal, 1999, 18(2): 185-193.
    [46]
    CASTONGUAY Y, MARKHART A H. Leaf gas exchange in water-stressed common bean and tepary bean[J]. Crop Science, 1992, 32(4): 980-986.
    [47]
    PERCIVAL G C, SHERIFFS C N. Identification of drought-tolerant woody periennials using chlorophyll fluorescence[J]. Journal of Arboriculture, 2002, 28(5): 215-223.
  • Cited by

    Periodical cited type(3)

    1. 张紫阳,刘艳,魏瑞研,林元震. 木本植物miRNAs参与环境胁迫应答的研究进展. 分子植物育种. 2021(16): 5372-5379 .
    2. 李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 . 本站查看
    3. 李双,苏艳艳,王厚领,李惠广,刘超,夏新莉,尹伟伦. 胡杨miR1444b在拟南芥中正调控植物抗旱性. 北京林业大学学报. 2018(04): 1-9 . 本站查看

    Other cited types(2)

Catalog

    Article views (1995) PDF downloads (43) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return