Citation: | LI Lan, WANG Hou-ling, ZHAO Lin, ZHAO Ying, LI Hui-guang, XIA Xin-li, YIN Wei-lun. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.[J]. Journal of Beijing Forestry University, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461 |
[1] |
MA H S, XIA X L, YIN W L. Constructing cDNA-AFLP reaction system of abiotic stress study for Populus euphratica[J]. Journal of Beijing Forestry University, 2010 (5): 34-40.
|
[1] |
GRIES D, ZENG F, FOETZKI A, et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant, Cell Environment, 2003, 26(5): 725-736.
|
[2] |
CHEN J, XIA X, YIN W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 378(3): 483-487.
|
[2] |
MA H S, XIA X L, YIN W L. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10.
|
[3] |
QIN Y R, XIA X L, YIN W L. Expression determination of miR169g under dehydration and high salinity stress in Populus euphratica leaves by real-time quantitative PCR[J]. Modern Instruments, 2011, 17(3): 28-30.
|
[3] |
马洪双, 夏新莉, 尹伟伦. 建立胡杨抗逆研究的cDNA-AFLP反应体系[J]. 北京林业大学学报, 2010, 32 (5): 34-40.
|
[4] |
马洪双, 夏新莉, 尹伟伦. 胡杨SCL7基因及其启动子片段的克隆与分析[J]. 北京林业大学学报, 2011, 33(1): 1-10.
|
[4] |
DUAN Z X, QIN Y R, XIA X L, et al. Overexpression of Populus euphratica peu-MIR156j gene enhancing salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2012, 34(6): 1-7.
|
[5] |
覃玉蓉, 夏新莉, 尹伟伦. 实时荧光定量PCR检测miR169g在脱水与高盐胁迫下胡杨叶中的表达[J]. 现代仪器, 2011, 17(3): 28-30.
|
[5] |
ZHAO L, YANG Y, WEN C J. Stem-loop real-time quantitative PCR for quantification of miRNA-421 by specific primers[J]. Journal of Nanjing Normal University: Natural Science, 2012, 35(2): 83-88.
|
[6] |
LI H S. The theories and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2006.
|
[6] |
段中鑫, 覃玉蓉, 夏新莉, 等. 超量表达胡杨peu-MIR156j基因增强拟南芥耐盐性[J]. 北京林业大学学报, 2012, 34(6): 1-7.
|
[7] |
YAN D H, FENNING T, TANG S, et al. Genome-wide transcriptional response of Populus euphratica to long-term drought stress[J]. Plant Science, 2012, 195: 24-35.
|
[8] |
WANG H L, CHEN J, TIAN Q, et al. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR[J]. Physiologia Plantarum, 2014, 152(3):529-545.
|
[9] |
LU S, SUN Y H, SHI R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. The Plant Cell Online, 2005, 17(8): 2186-2203.
|
[10] |
NI Z, HU Z, JIANG Q, et al. Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 330-335.
|
[11] |
ZHOU M, LI D, LI Z, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiology, 2013, 161(3): 1375-1391.
|
[12] |
LU S, LI Q, WEI H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10848-10853.
|
[13] |
LI B, YIN W, XIA X. Identification of microRNAs and their targets from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 388(2): 272-277.
|
[14] |
LI B, QIN Y, DUAN H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experimental Botany, 2011, 62(11): 3765-3779.
|
[15] |
SI J, ZHOU T, BO W, et al. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing[J]. BMC Genetics, 2014, 15(Suppl.1): S6.
|
[16] |
FANG Y, XIE K, XIONG L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135.
|
[17] |
WANG W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.
|
[18] |
CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 551-560.
|
[19] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.
|
[20] |
LI Z, BALDWN C M, HU Q, et al. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)[J]. Plant, Cell Environment, 2010, 33(2): 272-289.
|
[21] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221-227.
|
[22] |
NAG A, KING S, JACK T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22534-22539.
|
[23] |
RAO G, SUI J, ZENG Y, et al. De Novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana[J]. PloS One, 2014, 9(10): e109122.
|
[24] |
BARTEL D P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
|
[25] |
VOINNET O. Origin, biogenesis, and activity of plant microRNAs[J]. Cell, 2009, 136(4): 669-687.
|
[26] |
SHEN J, XING T, YUAN H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions[J]. PLoS One, 2013, 8(10): e77047.
|
[27] |
HIRSCH S, OLDROYD G E. GRAS-domain transcription factors that regulate plant development[J]. Plant Signal Behavior, 2009, 4(8): 698-700.
|
[28] |
ZHANG D, IYER L M, ARAVIND L. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms[J]. Bioinformatics, 2012, 28(19): 2407-2411.
|
[29] |
SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949.
|
[30] |
MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010,61: 4011-4019.
|
[31] |
SHUAI P, LIANG D, ZHANG Z, et al. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis[J]. BMC Genomics, 2013, 14(1): 233.
|
[32] |
ZHANG X, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646.
|
[33] |
赵丽, 杨洋, 温传俊. 茎-环RT-PCR法定量miRNA-421的引物设计[J]. 南京师范大学学报: 自然科学版, 2012, 35(2): 83-88.
|
[34] |
SHI H, YE T, ZHU J K, et al. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(15): 4119-4131.
|
[35] |
李和生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2006.
|
[36] |
CAO X, BARLOWE C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes[J]. The Journal of Cell Biology, 2000, 149(1): 55-66.
|
[37] |
ZHU Q H, FAN L, LIU Y, et al. MiR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton[J]. PLoS One, 2013, 8(12): e84390.
|
[38] |
ZHANG C, LIU L, WANG X, et al. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans[J]. Theoretical and applied genetics, 2014, 127: 1353-1364.
|
[39] |
OSTLER N, BRITZEN-LAURENT N, LIEBL A, et al. Gamma interferon-induced guanylate-binding protein 1 is a novel actin cytoskeleton remodeling factor[J]. Molecular and Cellular Biology, 2014, 34(2): 196-209.
|
[40] |
ZHU Z X, CAO Y C, CAO W J, et al. Recent progress in interferon induced protein GBP1 research[J]. Chinese Journal of Virology, 2014, 30(4): 456-462.
|
[41] |
LU S, SUN Y H, CHIANG V L. Stress-responsive microRNAs in Populus[J]. The Plant Journal, 2008, 55(1): 131-151.
|
[42] |
LU X Y, HUANG X L. Plant miRNAs and abiotic stress responses[J]. Biochemical and Biophysical Research Communications, 2008, 368(3): 458-462.
|
[43] |
SHAIK R, RAMAKRISHNA W. Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice[J]. PLoS One, 2012, 7(11): e49331.
|
[44] |
YIN F, GAO J, LIU M, et al. Genome-wide analysis of Water-stress-responsive microRNA expression profile in tobacco roots[J]. Functional Integrative Genomics, 2014, 14(2): 319-332.
|
[45] |
NANJO T, KOBAYASHI M, YOSHIBA Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana[J]. The Plant Journal, 1999, 18(2): 185-193.
|
[46] |
CASTONGUAY Y, MARKHART A H. Leaf gas exchange in water-stressed common bean and tepary bean[J]. Crop Science, 1992, 32(4): 980-986.
|
[47] |
PERCIVAL G C, SHERIFFS C N. Identification of drought-tolerant woody periennials using chlorophyll fluorescence[J]. Journal of Arboriculture, 2002, 28(5): 215-223.
|
1. |
张紫阳,刘艳,魏瑞研,林元震. 木本植物miRNAs参与环境胁迫应答的研究进展. 分子植物育种. 2021(16): 5372-5379 .
![]() | |
2. |
李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 .
![]() | |
3. |
李双,苏艳艳,王厚领,李惠广,刘超,夏新莉,尹伟伦. 胡杨miR1444b在拟南芥中正调控植物抗旱性. 北京林业大学学报. 2018(04): 1-9 .
![]() |