Citation: | WANG Shao-jie, ZHAO Nan, SHEN Ze-dan, SA Gang, SUN Hui-min, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16. DOI: 10.13332/j.1000-1522.20150023 |
[1] |
CLEMENS S, AARTS M, THOMINE S, et al. Plant science: the key to preventing slow cadmium poisoning[J].Trends in Plant Science,2013, 18(2): 92-99.
|
[2] |
KAPLAN O, INCE M, YAMAN M, et al. Sequential extraction of cadmium in different soil phases and plant parts from a former industrialized area[J].Environmental Chemistry Letters, 2011, 28(9): 397-404.
|
[3] |
NAWROT T, PLUSQUIN M, HOGERVORST J, et al. Environmental exposure to cadmium and risk of cancer: a prospective population based study[J]. Lancet Oncology, 2006, 7: 119-126.
|
[4] |
ASHRSF M, IRIS F, MANFRED G, et al. Salicylic acid alleviates the cadmium toxicity in barley seedlings[J].Plant Physiology, 2003, 132: 272-281.
|
[5] |
XU J, YIN H, LIU X, et al.Salt affects plant Cd-stress responses by modulating growth and Cd accumulation[J].Planta, 2010, 231: 449-459.
|
[6] |
BETHKA P C, LIBOUREL I G L, AOYAMA N, et al.The Arabidopsis aleurone layer responds to nitricoxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy[J]. Plant Physiology, 2007, 143(3): 1173-1188.
|
[7] |
CLARKE A, DESIKAN R, HURST R D, et al. NO way back: nitricoxide and programmed cell death in Arabidopsis thaliana suspension cultures[J]. The Plant Journal, 2000, 24(5): 667-677.
|
[8] |
GUO F Q, CRAWFORD N M.Arabidopsis nitric oxide synthase is targeted to mitochondria and protects against oxidative damage and dark-induced senescence[J].Plant Cell Online, 2005, 17(12): 3436-3450.
|
[9] |
XU J, WANG W Y, YIN H G, et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress[J]. Plant and Soil, 2010, 326: 321-330.
|
[10] |
WANG Q H, LIANG X, DONG Y J, et al.Effects of exogenous nitric oxide oncadmium toxicity, element contents and antioxidative system in Perennial ryegrass[J]. Plant Growth Regulation, 2013, 69: 11-20.
|
[11] |
ARASIMOWICE J M, FLORYSZAKW J, DECKERT J, et al. Nitricoxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants[J]. Plant Physiology and Biochemistry, 2012, 58: 124-134.
|
[12] |
SINGHH P, BATISH D R, KAUR G, et al.Nitric oxide(as sodium nitroprusside)supplementation ameliorates Cd toxicity in hydroponically grown wheat roots[J].Environmental and Experimental Botany, 2008, 63: 158-167.
|
[13] |
LIU S, YANG R, PAN Y, et al. Effects of exogenous nitric oxide on lipid peroxidation and ATPase activity in plasma membrane and photosynthetic characteristics of Catharanthus roseus under cadmium stress[J]. Journal of Agro-Environment Science, 2013, 32 (12): 2360-2368.
|
[14] |
PIQUERAS A, OLMOS E, MARTNEZ S J R, et al. Cd induced oxidative burst in tobacco BY-2 cells: time course, subcellular location and antioxidant response[J]. Free Radical Research, 1999, 31: 33-38.
|
[15] |
OLMOS E, JUAN R, MARTNEZ S, et al. Early steps in the oxidative burst induced by cadmium incultured tobacco cells (BY-2 line)[J]. Journal of Experimental Botany, 2003, 54 (381): 291-301.
|
[16] |
SUN J, CHEN S, DAI S X, et al.NaCl-induced alternations of cellular and tissueion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiology, 2009, 149: 1141-1153.
|
[17] |
SUN J, WANG M J, DING M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J].Plant Cell Environment,2010, 33: 943-958.
|
[18] |
SUN J, LI L, LIU M, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars[J]. Plant Cell, Tissue and Organ Culture, 2010, 103: 205-215.
|
[19] |
CHEN S L, POLLE A. Salt tolerance in Populus[J]. Plant Biology, 2010, 12: 317-333.
|
[20] |
POLLE A, KLEIN T, KETTNER C. Impact of cadmium on young plants of Populus euphratica and P.canescens, two poplar species that differ in stress tolerance[J]. New Forests, 2013, 44: 13-22.
|
[21] |
GU E S, JIANG X N, GUO Z C. Organogenesis and plantlet regeneration in vitro of Populus euphratica[J]. Acta Botanica Sinica, 1999, 41 (1): 29-33.
|
[22] |
GARCIA M C, LAMATTINA L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J].Plant Physiology, 2001, 126: 1196-1204.
|
[23] |
SUN J, WANG R G, LIU Z, et al. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulatorand non-hyperaccumulator ecotypes of Sedum alfredii[J].Plant Physiology, 2013, 170: 355-359.
|
[24] |
SHABALA S, NEWMAN I A. Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall[J]. Annual Botany, 2000, 85: 681-686.
|
[25] |
SHABALA S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll[J].Plant Cell Environment, 2000, 23: 825-837.
|
[26] |
LAETITIA P B, NATHALIE L, ALAIN V, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. The Plant Journal, 2002, 32:539-548.
|
[27] |
BESSONB A, PUGIN A, WENDEHENNE D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology, 2008, 59: 21-39.
|
[28] |
BESSON B A, GRAVOT A. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake[J].Plant Physiology, 2009, 149: 1302-1315.
|
[29] |
BESSON B A, COURTOIS C, GAUTHIER A, et al. Nitric oxide in plants: production and cross-talk with Ca2+ signaling[J]. Molecular Plant, 2008, 1: 218-228.
|