• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LIU Jin-hui, WANG Xue-qin, MA Yang, TAN Feng-zhu, .. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.[J]. Journal of Beijing Forestry University, 2015, 37(11): 89-99. DOI: 10.13332/j.1000-1522.20150067
Citation: LIU Jin-hui, WANG Xue-qin, MA Yang, TAN Feng-zhu, .. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.[J]. Journal of Beijing Forestry University, 2015, 37(11): 89-99. DOI: 10.13332/j.1000-1522.20150067

Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.

More Information
  • Received Date: March 15, 2015
  • Published Date: November 29, 2015
  • Based on the understanding of regular pattern of ground surface erosion and deposition, we investigated the spatial variation of soil grain size on Tamarix ramosissima nebkhas and interdune in Qira desert-oasis ecotone at the southern rim of the Taklimakan Desert, Xinjiang of northwestern China. Our investigation showed that the study area was dominated by very fine sand and silt, which belong to the particle size range that could be transported effectively by wind force. With the vegetation cover decreasing from 30% to 15%-20% to 10% and to 5%, the average particle size in 0-10 cm soil layer increased gradually from 74.41 to 77.28 to 86.29 and to 92.71 μm. Clay disappeared and coarse sand appeared in the surface with plant coverage less than 5%. Under the same vegetation condition, the minimum soil particle size was distributed mainly under shrubs, and the maximum value mainly in the interdune. For different positions of nebkhas, the sorting coefficient of interdune soil was the best, while under shrub it was the worst. In conclusion, the vegetation in desert-oasis ecotone can intercept a considerable part of suspended sediment transported from places far away by wind and result in finer surface material of the study area. The area under shrub had much finer grains and the interdune had coarser sand apparently, which was closely related to wind-driven sorting and redistribution of sand grain in situ. When the vegetation cover was less than 5%, widespread soil erosion existed both on nebkhas and interdune surface and therefore the resource islands effects disappeared. From the perspective of nebkhas stability, the total vegetation coverage should be maintained at least 10% in the desert-oasis ecotone.
  • [1]
    YANG Y T, ZHENG D, ZHANG X Q, et al. The spatial coupling of land use changes and its environmental effects on Hotan oasis during 1980-2010 [J]. Acta Geographical Sinica, 2013, 68(6): 813-824.
    [1]
    TENGBERG A. Nebkha dunes as indicators of wind erosion and land degradation in the Sahel zone of Burkina Faso[J]. Journal of Arid Environments, 1995, 30(3): 265-282.
    [2]
    WANG X Q,HU Y F,YANG D L, et al. Effect of Alhagi sparsifolia community on wind block and drift sand control in the oasis-desert ecotone[J]. Arid Land Geography, 2011, 34(6): 919-925.
    [2]
    COMELIS W M. Hydroclimatology of wind erosion in arid environments (Chapter 9)[M]∥DODORICO P, PORPORATO A. Dryland ecohydrology. Dordrecht, Netherlands: Springer, 2006: 141-159.
    [3]
    YOUSSEF F, VISSER S M, KARSSENBERG D, et al. The effect of vegetation patterns on wind-blown mass transport at the regional scale: a wind tunnel experiment[J]. Geomorphology, 2012, 159: 178-188.
    [3]
    QIAN Y B, ZHANG X M, LI X M. A study on grain-size features of sand material of the oases in the southern margin of the Taklimakan Desert [J]. Journal of Desert Research, 1995, 15(2): 131-135.
    [4]
    FIELD J P, BRESHEARS D D, WHICKER J J. Toward a more holistic perspective of soil erosion: why aeolian research needs to explicitly consider fluvial processes and interactions[J]. Aeolian Research, 2009, 1(1): 9-17.
    [4]
    YANG F. Research on the morphological interactions between Tamarix ramosissima thickets and nebkhas under different sand supply conditions[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012.
    [5]
    MC TAINSH G H, LYNCH A W, TEWS E K. Climate controls upon dust storm occurrence in eastern Australia[J]. Journal of Arid Environments, 1998, 39(3): 457-466.
    [5]
    QIAN G Q, DONG Z B, LUO W Y, et al. Grain size characteristics and spatial variation of surface sediments in the Badain Jaran Desert [J]. Journal of Desert Research, 2011, 31(6): 1357-1364.
    [6]
    FIELD J P, BELNAP J, BRESHEARS D D, et al. The ecology of dust[J]. Frontiers in Ecology and the Environment, 2010, 8(8): 423-430.
    [6]
    CHEN G T. Techniques for controlling sand hazards[M]. Beijing: Chemical Industry Press, 2004.
    [7]
    L P, DONG Z B, ZHAO A G, et al. Effect of shrub density on grain sizes and threshold wind velocity [J].Journal of Sediment Research, 2011(3): 63-66.
    [7]
    LARNEY F J, BULLOCK M S, JANZEN H H, et al. Wind erosion effects on nutrient redistribution and soil productivity [J]. Soil Water Conserv, 1998, 53(2): 133-140.
    [8]
    YANG D L. Study on the wind-blown sand activities of three typical land surfaces in Cele oasis-desert ecotone[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2011.
    [8]
    DUPONT S, BERGAMETTI G, SIMOENS S. Modeling aeolian erosion in presence of vegetation[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 168-187.
    [9]
    LANCASTER N, BAAS A. Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California[J]. Earth Surface Processes and Landforms, 1998, 23(1): 69-82.
    [9]
    GAO C J, LIU Q, WANG Y X, et al. Grain-size characteristics of sand materials in Tamarix cone veins and wind sandy environmental change in the southern region of Taklimakan Desert [J]. Research of Soil and Water Conservation, 2014, 21(3): 41-46.
    [10]
    LI J, OKIN G S, EPSTEIN H E. Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2): 1-8.
    [10]
    WU Z. Aeolian geomorphology[M]. Beijing: Science Press, 1987: 39-44.
    [11]
    WU S L, LI Z Z, HUI J, et al. Study on the distribution character of surface pressure of nabkha in wind-tunnel imitative experiment[J]. Arid Land Geography, 2006, 29(6): 790-796.
    [11]
    OKIN G S, MAHOWALD N, CHADWICK O A, et al. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems[J]. Global Biogeochemical Cycles, 2004, 18(2): 1-9.
    [12]
    LI Z Z, WU S L, XIAO C X, et al. Study on wind-tunnel simulated flow pattern over Nabkha in Hetian River Basin, Xinjiang(Ⅱ)[J]. Journal of Desert Research, 2007, 27(1): 15-19.
    [12]
    OKIN G S, GILLETTE D A. Distribution of vegetation in wind-dominated landscapes: implications for wind erosion modeling and landscape processes[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D9): 9673-9683.
    [13]
    LI Z Z, WU S L, WANG X F, et al. Bio-geomorphologic growth process of Tamarix nabkha in the Hotan River Basin of Xinjiang [J]. Acta Geographical Sinica, 2007, 62(5): 462-470.
    [13]
    PUIGDEFABREGAS J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands[J]. Earth Surface Processes and Landforms, 2005, 30(2): 133-147.
    [14]
    RAVI S, D’ODORICO P, OKIN G S. Hydrologic and aeolian controls on vegetation patterns in arid landscapes[J]. Geophysical Research Letters, 2007, 34(24): 1-5.
    [14]
    LIU H X, LI J C, SU Z Z, et al. The characteristics of grain size and chemical elements of the nebkha sediments in the southwestern margin of the Mu Us Sand Land[J]. Journal of Desert Research, 2015, 35(1): 24-31.
    [15]
    WANG H L, GAO J L, YUAN W J, et al. Spatially heterogeneous characteristics of surface soil particles around nebkhas in the Gobi Desert[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 464-473.
    [15]
    LI J, OKIN G S, ALVAREZ L, et al. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA[J]. Biogeochemistry, 2007, 85(3): 317-332.
    [16]
    JIA W R, LI S Y, GAO X Y, et al. The foliar dust grain size characteristics of different species in the Taklimakan Desert[J]. Journal of Desert Research, 2015, 34(3): 658-665.
    [16]
    LEENDERS J K, VAN BOXEL J H, STERK G. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso[J]. Earth Surface Processes and Landforms, 2007, 32(10): 1454-1474.
    [17]
    FIELD J P, BRESHEARS D D, WHICKER J J, et al. Sediment capture by vegetation patches: implications for desertification and increased resource redistribution[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G1): 1-9.
    [17]
    DU J H, YAN P, DONG Y X. The progress and prospects of nebkhas in arid areas [J]. Acta Geographical Sinica, 2010, 65(3): 339-350.
    [18]
    HAN Z Y, WANG X Q, YANG F, et al. Sand trapping capability of two dominant plant species in the Qira oasis-desert ecotone[J]. Arid Zone Research, 2013, 30(4): 659-665.
    [18]
    杨依天, 郑度, 张雪芹, 等. 1980—2010年和田绿洲土地利用变化空间耦合及其环境效应[J]. 地理学报, 2013, 68(6): 813-824.
    [19]
    SHANG R Y, QI Y X, ZHAO T N, et al. Field investigation on the influence of vegetation on wind and soil erosion[J]. Research of Soil and Water Conservation, 2006, 13(4): 37-39.
    [19]
    王雪芹, 胡永锋, 杨东亮, 等. 绿洲—沙漠过渡带骆驼刺群落的防风阻沙作用[J]. 干旱区地理, 2011, 34(6): 919-925.
    [20]
    钱亦兵, 张希明, 李晓明. 塔克拉玛干沙漠南缘绿洲沙物质粒度特征[J]. 中国沙漠, 1995, 15(2): 131-135.
    [21]
    杨帆. 差异沙源供给条件下柽柳灌丛与沙堆形态间的互馈关系[D]. 北京:中国科学院研究生院,2012.
    [22]
    FOLK R L, WARD W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
    [23]
    钱广强, 董治宝, 罗万银, 等. 巴丹吉林沙漠地表沉积物粒度特征及区域差异[J]. 中国沙漠, 2011, 31(6): 1357-1364.
    [24]
    陈广庭.沙害防治技术[M]. 北京:化学工业出版社, 2004.
    [25]
    吕萍, 董治宝, 赵爱国, 等. 灌丛密度对沙粒粒度和起动风速影响研究[J]. 泥沙研究, 2011(3): 63-66.
    [26]
    LIVINGSTONE I. Grain-size variation on a ‘complex’ linear dune in the Namib Desert[J]. Geological Society of London Special Publications, 1987, 35(1): 281-291.
    [27]
    杨东亮. 策勒绿洲—沙漠过渡带典型下垫面风沙活动研究[D]. 北京:中国科学院研究生院,2011.
    [28]
    WIGGS G F S, THOMAS D S G, BULLARD J E, et al. Dune mobility and vegetation cover in the southwest Kalahari Desert[J]. Earth Surface Processes and Landforms, 1995, 20(6): 515-529.
    [29]
    高辰晶, 刘倩, 王艳欣, 等. 塔克拉玛干沙漠南缘红柳沙包沙物质粒度特征与风沙环境变化[J]. 水土保持研究, 2014, 21(3): 41-46.
    [30]
    CATTLE S R, MCTAINSH G H, ELIAS S. Aeolian dust deposition rates, particle-sizes and contributions to soils along a transect in semi-arid New South Wales, Australia[J]. Sedimentology, 2009, 56(3): 765-783.
    [31]
    吴正. 风沙地貌学[M]. 北京:科学出版社, 1987:39-44.
    [32]
    武胜利, 李志忠, 惠军, 等. 灌丛沙堆表面压力分布特征的实验研究[J]. 干旱区地理, 2006, 29(6): 790-796.
    [33]
    李志忠, 武胜利, 肖晨曦, 等. 新疆和田河流域灌丛沙堆风洞流场的实验研究(Ⅱ)[J]. 中国沙漠, 2007, 27(1): 15-19.
    [34]
    李志忠, 武胜利, 王晓峰, 等. 新疆和田河流域柽柳沙堆的生物地貌发育过程[J]. 地理学报, 2007, 62(5): 462-470.
    [35]
    刘海霞, 李晋昌, 苏志珠, 等. 毛乌素沙地西南缘灌丛沙丘沉积物的粒度和元素特征[J]. 中国沙漠, 2015, 35(1): 24-31.
    [36]
    王淮亮, 高君亮, 原伟杰, 等. 戈壁灌丛堆周边地表土壤颗粒的空间异质特征[J]. 植物生态学报, 2013, 37(5): 464-473.
    [37]
    贾文茹, 李生宇, 高晓阳, 等. 塔克拉玛干沙漠腹地不同种类植物叶面滞尘粒度特征[J]. 中国沙漠, 2015, 34(3): 658-665.
    [38]
    SEIFEERT C L, COX R T, FORMAN S L, et al. Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States[J]. Quaternary Research, 2009, 71(3): 329-339.
    [39]
    杜建会, 严平, 董玉祥. 干旱地区灌丛沙堆研究现状与展望[J]. 地理学报, 2010, 65(3): 339-350.
    [40]
    韩章勇, 王雪芹, 杨帆, 等. 策勒绿洲-沙漠过渡带两个建群种阻沙能力对比研究[J]. 干旱区研究, 2013, 30(4): 659-665.
    [41]
    尚润阳, 祁有祥, 赵廷宁, 等. 植被对风及土壤风蚀影响的野外观测研究[J]. 水土保持研究, 2006, 13(4): 37-39.
  • Related Articles

    [1]Xing Xiaoyi, Zhang Mengyuan, Li Xiaolu, Fan Shuxin, Dong Li. Spatial heterogeneity in leaf coloring date and the phenological response to thermal environment variations of Beijing landscape trees[J]. Journal of Beijing Forestry University, 2024, 46(1): 119-130. DOI: 10.12171/j.1000-1522.20210546
    [2]Xiong Kai, Zhao Yujuan, Chen Jian, Zhang Yun, Zhao Guangdong, Yang Hongguo, Shi Zuomin, Xu Gexi. Spatial heterogeneity of soil pH and nutrients in Miyaluo Subalpine dark coniferous forest of western Sichuan, southwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 55-64. DOI: 10.12171/j.1000-1522.20200422
    [3]Chen Keyi, Zhang Huiru, Zhang Bo, He Youjun. Spatial distribution simulation of recruitment trees of natural secondary forest based on geographically weighted regression[J]. Journal of Beijing Forestry University, 2021, 43(2): 1-9. DOI: 10.12171/j.1000-1522.20200157
    [4]Ma Yali, Guo Sujuan. Spatial heterogeneity of photosynthetic characteristics in Chinese chestnut canopy[J]. Journal of Beijing Forestry University, 2020, 42(10): 71-83. DOI: 10.12171/j.1000-1522.20200059
    [5]Duan Wenbiao, Guo Qiwen, Chen Lixin, Feng Jing, Wang Lixia, Du Shan. Heterogeneity of soil surface temperature and shallow soil temperature in different size gaps of broadleaved Pinus koraiensis forest[J]. Journal of Beijing Forestry University, 2019, 41(9): 108-121. DOI: 10.13332/j.1000-1522.20180390
    [6]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [7]WANG Xiao-hui, GUO Qing-xi, CAI Ti-jiu. Quantitative effect of topography and forest type on snow melting process in spring[J]. Journal of Beijing Forestry University, 2016, 38(2): 83-89. DOI: 10.13332/j.1000-1522.20150317
    [8]GONG Jun-jie, YANG Hua, DENG Hua-feng. Spatial heterogeneity and complexity of forest landscape along the Ming Great Wall in Beijing.[J]. Journal of Beijing Forestry University, 2015, 37(5): 81-87. DOI: 10.13332/j.1000-1522.20140185
    [9]JI Jin-nan, WU Zhi-yang. Analyses of plant root additional cohesion heterogeneity at loess slope on the Loess Plateau. Journal of Beijing Forestry University[J]. Journal of Beijing Forestry University, 2014, 36(4): 30-35. DOI: 10.13332/j.cnki.jbfu.2014.04.009
    [10]BI Hua-xing, LI Xiao-yin, LIU Xin, LI Jun, GUO Meng-xia. Spatial heterogeneity of soil moisture using geological statistics method in the loess region of west Shanxi Province[J]. Journal of Beijing Forestry University, 2006, 28(5): 59-66.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (2352) PDF downloads (35) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return