• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
Citation: Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468

Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China

More Information
  • Received Date: December 28, 2017
  • Revised Date: April 01, 2018
  • Published Date: October 31, 2018
  • ObjectiveExploring the spatial heterogeneity of leaf area index (LAI) and controlling factors is to provide a solid foundation for obtaining the distribution of LAI in local or region scales.
    MethodBased on a 30 ha (500m×600m) mixed broadleaved-Korean pine (Pinus koraiensis) forest at Fenglin National Nature Reserve in Xiaoxing'an Mountains of northeastern China, which was divided into 750 subplots by 20m×20m, all woody species with a diameter at breast height≥1cm were identified and surveyed. We first obtained LAI values of six major species (e.g., P. koraiensis, Abies nephrolepis, Tilia amurensis, Betula costata, Ulmus laciniata and Acer mono) based on empirical models between LAI and basal area for each subplot. We then analyzed the spatial heterogeneity of LAI for major species and the forest stand by geo-statistic methods (semivariogram and Kriging interpolation), and the correlations between LAI and topographic variables (e.g., elevation, slope degree, slope aspect and curvature) were also explored.
    ResultThe variation coefficient of LAI for six major species was all larger than 10%, and can be considered relatively moderate or strong, and degrees of variation were U. laciniata > B. costata > T. amurensis > P. koraiensis > A. mono > A. nephrolepis. The ratio value of nugget (C0) by sill (C0+C) was 0.50 for P. koraiensis, showing moderate spatial autocorrelation; in contrast, the ratio values for other five species were all lower than 0.25, showing strong spatial autocorrelation. The range (A) values ranged from 24m (T. amurensis) to 126m (P. koraiensis) of LAI for six major species.The clearer anisotropic structures were exhibited by LAI values for P. koraiensis, U. laciniata and A. mono, in contrast to other species; additionally, the spatial heterogeneity of LAI in east-west (0°) direction was clearly larger than that in south-north (90°) within 240m for P. koraiensis, and showed opposite results when larger 240m. The LAI was significantly positively correlated with all elevation, slope degree, slope aspect and curvature for P. koraiensis (P < 0.01), and different correlations between four topographic variables and LAI values were showed for other five species.
    ConclusionSpatial heterogeneity of LAI is correlated with not only study scale but also direction. The influence of topographic variables on LAI distribution varies with species, but the four topographic variables all significantly affected LAI distributions for a forest stand.
  • [1]
    Chen J M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(6): 1353-1368. doi: 10.1109/36.544559
    [2]
    任海, 彭少麟.鼎湖山森林群落的几种叶面积指数测定方法的比较[J].生态学报, 1997, 17(2): 220-223. doi: 10.3321/j.issn:1000-0933.1997.02.014

    Ren H, Peng S L. Comparison of methods of estmation leaf area index in Dinghushan forests[J]. Acta Ecologica Sinica, 1997, 17(2): 220-223. doi: 10.3321/j.issn:1000-0933.1997.02.014
    [3]
    Broeckx L S, Verlinden M S, Vangronsveld J, et al. Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation[J]. Tree Physiology, 2012, 32(10): 1214-1226. doi: 10.1093/treephys/tps083
    [4]
    Ewert F. Modelling plant responses to elevated CO2: how important is leaf area index[J]. Annals of Botany, 2004, 93(6): 619-627. doi: 10.1093/aob/mch101
    [5]
    Dermody O, Long S P, DeLucia E H. How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently[J]. New Phytologist, 2006, 169(1): 145-155. doi: 10.1111/nph.2006.169.issue-1
    [6]
    Tor-ngern P, Oren R, Ward E J, et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy[J]. New Phytologist, 2015, 205(2): 518-525. doi: 10.1111/nph.13148
    [7]
    Chen J, Liu J, Cihlar J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J]. Ecological Modelling, 1999, 124(2): 99-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5daa40800037794167d3c1cbebb85242
    [8]
    Tillack A, Clasen A, Kleinschmit B, et al. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices[J]. Remote Sensing of Environment, 2014, 141: 52-63. doi: 10.1016/j.rse.2013.10.018
    [9]
    李哈滨, 王政权, 王庆成.空间异质性定量研究理论与方法[J].应用生态学报, 1998, 9(6): 651-657. doi: 10.3321/j.issn:1001-9332.1998.06.018

    Li H B, Wang Z Q, Wang Q C. Theory and methodology of spatial heterogeneity quantification[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 651-657. doi: 10.3321/j.issn:1001-9332.1998.06.018
    [10]
    Li H, Reynolds J. On definition and quantification of heterogeneity[J]. Oikos, 1995, 73(2): 280-284. doi: 10.2307/3545921
    [11]
    柳艺博, 居为民, 陈镜明, 等. 2000—2010年中国森林叶面积指数时空变化特征[J].科学通报, 2012, 57(16): 1435-1445. http://www.cqvip.com/qk/94252x/201216/42232363.html

    Liu Y B, Ju W M, Chen J M, et al. Spatial and temporal variations of forest LAI in China during 2000-2010[J]. Chinese Science Bulletin, 2012, 57(16): 1435-1445. http://www.cqvip.com/qk/94252x/201216/42232363.html
    [12]
    Yan G, Hu R, Wang Y, et al. Scale effect in indirect measurement of leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3475-3484. doi: 10.1109/TGRS.2016.2519098
    [13]
    吕瑜良, 刘世荣, 孙鹏森, 等.川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征[J].林业科学, 2007, 43(8): 1-7. http://d.old.wanfangdata.com.cn/Periodical/lykx200708001

    Lü Y L, Liu S R, Sun P S, et al. Seasonal and spatial variations of leaf area index of sub-alpine dark coniferous forest during growing season in western Sichuan[J]. Scientia Silvae Sinicae, 2007, 43(8): 1-7. http://d.old.wanfangdata.com.cn/Periodical/lykx200708001
    [14]
    刘志理, 戚玉娇, 金光泽.小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局[J].林业科学, 2013, 49(8): 58-64. http://d.old.wanfangdata.com.cn/Periodical/lykx201308009

    Liu Z L, Qi Y J, Jin G Z. Seasonality and spatial pattern of leaf area index of a spruce-fir forest at the valley in Xiaoxing'an Mountains[J]. Scientia Silvae Sinicae, 2013, 49(8): 58-64. http://d.old.wanfangdata.com.cn/Periodical/lykx201308009
    [15]
    姚丹丹, 雷相东, 余黎, 等.云冷杉针阔混交林叶面积指数的空间异质性[J].生态学报, 2015, 35(1): 71-79. http://d.old.wanfangdata.com.cn/Periodical/stxb201501010

    Yao D D, Lei X D, Yu L, et al. Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 71-79. http://d.old.wanfangdata.com.cn/Periodical/stxb201501010
    [16]
    Zhu W, Xiang W, Pan Q, et al. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters[J]. Biogeosciences, 2016, 13(12): 3819-3831. doi: 10.5194/bg-13-3819-2016
    [17]
    赵传燕, 沈卫华, 彭焕华.祁连山区青海云杉林冠层叶面积指数的反演方法[J].植物生态学报, 2009, 33(5): 860-869. doi: 10.3773/j.issn.1005-264x.2009.05.004

    Zhao C Y, Shen W H, Peng H H. Methods for determining canopy leaf area index of Picea crassifolia forest in Qilian Mountains, China[J]. Journal of Plant Ecology, 2009, 33(5): 860-869. doi: 10.3773/j.issn.1005-264x.2009.05.004
    [18]
    昝梅, 李登秋, 居为民, 等.新疆喀纳斯国家自然保护区植被叶面积指数观测与遥感估算[J].生态学报, 2013, 33(15): 4744-4757. http://d.old.wanfangdata.com.cn/Periodical/stxb201315025

    Zan M, Li D Q, Ju W M, et al. Measurement and retrieval of leaf area index using remote sensing data in Kanas National Nature Reserve, Xinjiang[J]. Acta Ecologica Sinica, 2013, 33(15): 4744-4757. http://d.old.wanfangdata.com.cn/Periodical/stxb201315025
    [19]
    邹杰, 阎广建.森林冠层地面叶面积指数光学测量方法研究进展[J].应用生态学报, 2010, 21(11): 2971-2979. http://d.old.wanfangdata.com.cn/Periodical/yystxb201011035

    Zou J, Yan G J.Optical methods for in situ measuring leaf area index of forest canopy: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2971-2979. http://d.old.wanfangdata.com.cn/Periodical/yystxb201011035
    [20]
    Liu Z L, Chen J M, Jin G Z, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agricultural and Forest Meteorology, 2015, 209: 36-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b185d3acdfe8f37bb02c192888296f3b
    [21]
    Hwang Y, Ryu Y, Kimm H, et al. Correction for light scattering combined with sub-pixel classification improves estimation of gap fraction from digital cover photography[J]. Agricultural and Forest Meteorology, 2016, 222: 32-44. doi: 10.1016/j.agrformet.2016.03.008
    [22]
    向洪波, 郭志华, 赵占轻, 等.不同空间尺度森林叶面积指数的估算方法[J].林业科学, 2009, 45(6): 139-144. doi: 10.3321/j.issn:1001-7488.2009.06.024

    Xiang H B, Guo Z H, Zhao Z Q, et al. Estimating method of forest leaf area index on different space scales[J]. Scientia Silvae Sinicae, 2009, 45(6): 139-144. doi: 10.3321/j.issn:1001-7488.2009.06.024
    [23]
    徐希孺, 范闻捷, 陶欣.遥感反演连续植被叶面积指数的空间尺度效应[J].中国科学: D辑, 2009, 39(1): 79-87. http://www.cqvip.com/Main/Detail.aspx?id=29434659

    Xu X R, Fan W J, Tao X.Remote sensing inverse spatial scale effect of the continuous vegetation leaf area index[J]. Science in China Series D: Earth Sciences, 2009, 39(1): 79-87. http://www.cqvip.com/Main/Detail.aspx?id=29434659
    [24]
    刘志理, 金光泽.利用凋落物法和林木因子模拟小兴安岭阔叶红松林叶面积指数[J].生态学报, 2015, 35(10): 3190-3198. http://d.old.wanfangdata.com.cn/Periodical/stxb201510007

    Liu Z L, Jin G Z. Using litter collection and tree data to model leaf area index in the mixed broadleaved-Korean pine forest in the Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2015, 35(10): 3190-3198. http://d.old.wanfangdata.com.cn/Periodical/stxb201510007
    [25]
    王政权, 王庆成, 李哈滨.红松老龄林主要树种的空间异质性特征与比较的定量研究[J].植物生态学报, 2000, 24(6): 718-723. doi: 10.3321/j.issn:1005-264X.2000.06.013

    Wang Z Q, Wang Q C, Li H B. Characteristics and comparison of spatial heterogeneity of the main species of Korean pine in old growth forests[J]. Journal of Plant Ecology, 2000, 24(6): 718-723. doi: 10.3321/j.issn:1005-264X.2000.06.013
    [26]
    Rossi R E, Mulla D J, Journel A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs, 1992, 62(2): 277-314. doi: 10.2307/2937096
    [27]
    徐丽娜, 金光泽.小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J].生物多样性, 2012, 20(4): 470-481. http://d.old.wanfangdata.com.cn/Periodical/swdyx201204009

    Xu L N, Jin G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China[J]. Biodiversity Science, 2012, 20(4): 470-481. http://d.old.wanfangdata.com.cn/Periodical/swdyx201204009
    [28]
    Mcdonald D J, Cowling R M, Boucher C. Vegetation-environment relationships on a species-rich coastal mountain range in the Fynbos Biome (South Africa)[J]. Plant Ecology, 1996, 123(2): 165-182. doi: 10.1007/BF00118269
    [29]
    李景文.红松混交林生态与经营[M].哈尔滨:东北林业大学出版社, 1997.

    Li J W.The ecology and management of Korean pine mixed forest in Northeast China[M]. Harbin: Northeast Forestry University Press, 1997.
    [30]
    赵维俊, 刘贤德, 敬文茂, 等.祁连山青海云杉林群落结构的空间异质性[J].应用生态学报, 2015, 26(9): 2591-2599. http://d.old.wanfangdata.com.cn/Periodical/yystxb201509001

    Zhao W J, Liu X D, Jing W M, et al. Spatial heterogeneity of community structure of Picea crassifolia forest in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2591-2599. http://d.old.wanfangdata.com.cn/Periodical/yystxb201509001
    [31]
    区余端, 苏志尧, 李镇魁, 等.地形因子对粤北山地森林不同生长型地表植物分布格局的影响[J].应用生态学报, 2011, 22(5): 1107-1113. http://d.old.wanfangdata.com.cn/Periodical/yystxb201105001

    Qu Y D, Su Z Y, Li Z K, et al. Effects of topographic factors on the distribution patterns of ground plants with different growth forms in montane forests in North Guangdong, China[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1107-1113. http://d.old.wanfangdata.com.cn/Periodical/yystxb201105001
    [32]
    许洺山, 赵延涛, 杨晓东, 等.浙江天童木本植物叶片性状空间变异的地统计学分析[J].植物生态学报, 2016, 40(1): 48-59. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601005

    Xu M S, Zhao Y T, Yang X D, et al. Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province[J]. Journal of Plant Ecology, 2016, 40(1): 48-59. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201601005
  • Cited by

    Periodical cited type(17)

    1. 李江波,翟志宏,李海燕,邓燕,陈思豪,王忆娴,丁云飞. 广州地区典型绿化乔木降温增湿效应研究. 气候与环境研究. 2024(01): 13-24 .
    2. 姚玉敏,陶雨,关振,韩旭阳,艾欣洁,常心茹. 基于数值模拟的传统村落公共空间热舒适性研究. 长春师范大学学报. 2024(06): 111-119 .
    3. 顾绍茹,杨兴,陈翰博,杨冰霜,戴志楠,陈俊辉,方铮,王海龙. 小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响. 浙江农林大学学报. 2023(01): 176-187 .
    4. 肖敏,李翰宇 ,张晓烽. 树冠透射率对微气候和建筑能耗的综合影响. 中国园林. 2023(01): 118-123 .
    5. 孟磊 ,艾如波 ,林晗 ,沈雯 ,谢安强 . 土壤铝胁迫下内生真菌对千年桐幼苗光合作用的影响. 中南林业科技大学学报. 2023(03): 40-49+72 .
    6. 邓毓雯,李丽,庞玥. 乡村振兴视角下临海村落公共建筑气候适应性设计——以硇洲岛港头村“渔村客厅”设计为例. 安徽建筑. 2023(05): 17-19+68 .
    7. 徐欢,朱珈仪,李红. 基于ENVI-met模拟的城市校园绿地夏季微气候适应性优化设计. 现代城市研究. 2023(07): 101-106+114 .
    8. 田菁,陈琳涵,张玉环,赵群,刘云. 基于ENVI-met模拟冷岛效应指标及差异性分析. 北京农学院学报. 2023(04): 105-109 .
    9. 帅林茹,冯莉,阳少奇. 植被种植方式对城市微环境热舒适度影响的数值模拟研究. 生态学杂志. 2022(08): 1611-1618 .
    10. 张常旺,王彦良,孟飞. 城市表面反射率变化对室外热环境的影响研究. 测绘与空间地理信息. 2022(12): 49-52 .
    11. 阳少奇,冯莉,田慧慧,刘艳霞. 无人机热红外支持下的城市微尺度热环境模拟. 环境科学. 2021(01): 492-500 .
    12. 方舒,唐坚,任洁. 亚热带城市中央公园“乔灌草”绿植面积最大化线性规划研究——以广州城市中央公园为例. 环境科学与管理. 2021(02): 34-37+61 .
    13. 胡杨,马克明. 城市街道绿化对空气质量及微气候影响的综合模拟研究. 生态学报. 2021(04): 1314-1331 .
    14. 王月明,乔雨轩,王楠楠,黎俊仪,傅伟聪,董建文. 国内CFD模拟在城市微气候中的应用综述. 中国城市林业. 2021(02): 53-60 .
    15. 蒋毅,易宇,罗松钦,徐峰. 基于热环境模拟和热反应的城市室外热安全风险耦合研究. 城市建筑. 2021(19): 9-12 .
    16. 郭晓华,戴菲,岳峰. 国家自然科学基金视角下风景园林规划设计研究进展——以2008—2018年项目信息及论文产出为据. 中国城市林业. 2020(03): 1-7+12 .
    17. 吴思佳,董丽,贾培义,易慧琳. 基于计算流体力学数值模拟的城市绿地温湿效应及室外热舒适评价研究进展. 风景园林. 2019(12): 79-84 .

    Other cited types(38)

Catalog

    Article views (1438) PDF downloads (38) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return