• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. DOI: 10.13332/j.1000-1522.20150105
Citation: WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. DOI: 10.13332/j.1000-1522.20150105

Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.

More Information
  • Received Date: April 02, 2015
  • Published Date: October 30, 2015
  • Based on field data of 772 permanent plots in Baihe Forestry Bureau, Changbai Mountains area of northeastern China, we established global models, including Logistic and Poisson, using least square method, and local models (GWR, geographically weighted regression), including GWLR (geographically weighted logistic regression) and GWPR (geographically weighted Poisson regression), to predict distribution of natural Korean pines (Pinus koraiensis). The results showed that slope and average DBH (diameter at breast height) of trees in sub-compartment had significant influence on the distribution of the natural Korean pines, which were mainly found in the eastern and southwestern area of the bureau, and few in the north. A comparison of AICs and spatial autocorrelation of global and local model residuals showed that GWR had obviously smaller AICs and more desirable model residuals (significant decrease of spatial autocorrelation) than global models. Thus, GWR could efficiently solve spatial heterogeneity of plots and improve the accuracy of predicting occurrence probability and count of natural Korean pines. This study would provide theoretical basis for predicting distribution of natural Korean pines in large scale forest management.
  • [1]
    韩进轩.东北红松林分布区气候因素的主分量分析[J].生态学杂志,1986,5(5): 27-30.
    [1]
    HAN J X. Principal components analysis of climatic factors of Pinus koraiensis distribution region in North-eastern China[J]. Journal of Ecology,1986,5(5): 27-30.
    [2]
    马建路,庄丽文,陈动,等.红松的地理分布[J].东北林业大学学报,1992,20(5):40-48.
    [3]
    MA J L, ZHUANG L W, CHEN D, et al. The geographical distribution of Korean pine[J]. Journal of Northeast Forestry University,1992,20(5):40-48.
    [4]
    曹铭昌,周广胜,翁恩生.广义模型及分类回归树在物种分布模拟中的应用与比较[J].生态学报,2005,25(8):2031-2040.
    [5]
    CAO M C, ZHOU G S, WENG E S. Application and comparison of generalized models and classification and regression tree in simulating tree species distribution[J]. Acta Ecologica Sinica,2005,25(8):2031-2040.
    [6]
    布仁仓,常禹,胡远满,等.小兴安岭针叶树种在不同尺度上对环境因子的敏感性分析[J].植物生态学报,2008,32(1):80-87.
    [7]
    BU R C, CHANG Y, HU Y M, et al. Sensitivity of coniferous trees to environmental factors at different scales in the Small Xing' An mountains, Cnina[J]. Journal of Plant Ecology,2008,32(1):80-87.
    [8]
    郭福涛,胡海清,马志海,等.不同模型对拟合大兴安岭林火发生与气象因素关系的适用性[J].应用生态学报,2010,21(1):159-164.
    [9]
    GUO F T, HU H Q, MA Z H, et al. Spatial point process for spatial distribution pattern of lightning-caused forest fires in Daxing' an Mountains[J]. Acta Ecologica Sinica,2010,21(1):159-164.
    [10]
    刘畅,李凤日,甄贞,等.空间误差模型在黑龙江省森林碳储量空间分布的应用[J].应用生态学报,2014,25(10):2779-2786.
    [11]
    LIU C, LI F R, ZHEN Z, et al. Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model[J]. Chinese Journal of Applied Ecology,2014,25(10):2779-2786.
    [12]
    覃文忠.地理加权回归基本理论与应用研究[D].上海: 同济大学,2007.
    [13]
    QIN W Z. The Basic Theoretics and Application Research on Geographically Weighted Regression[D]. Shanghai: Tongji University,2007.
    [14]
    刘畅,李凤日,贾炜玮,等.基于局域统计量的黑龙江省多尺度森林碳储量空间分布变化[J].应用生态学报,2014,25(9):2493-2500.
    [15]
    LIU C, LI F R, JIA W W, et al. Multiple-scale analysis on spatial distribution changes of forest carbon storage in Heilongjiang Province, Northeast China based on local statistics[J]. Chinese Journal of Applied Ecology,2014,25(9):2493-2500.
    [16]
    BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis,1996,28(4):281-298.
    [17]
    ZHEN Z, LI F R, LIU Z G, et al. Geographically local modeling of occurrence, count, and volume of down wood in Northeast China[J]. Applied Geography,2013,37:114-126.
    [18]
    SHI H J, ZHANG L J, LIU J G. A new spatial-attribute weighting function for geographically weighted regression[J]. Canadian Journal of Forest Research,2006,36:996-1005.
    [19]
    SIORDIA C, SAENZ J, TOM S E. An introduction to macro-level spatial nonstationarity: a geographically weighted regression analysis of diabetes and poverty[J]. Human Geographies,2012,6(2):5-13.
    [20]
    CHEN Y J, DENG W S, YANG T C, et al. Geographically weighted quantile regression: an application to U.S. Mortality data[J]. Geographical Analysis,2012,44:134-150.
    [21]
    吕萍,甄辉.基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究[J].经济地理,2010,30(3):472-478.
    [22]
    L P, ZHEN H. Affecting factors research of Beijing residential land price based on GWR model[J]. Economic Geography,2010,30(3):472-478.
    [23]
    顾凤岐,赵倩.林木生长关系的GWR模型[J].东北林业大学学报,2012,40(6):129-140.
    [24]
    GU F Q, ZHAO Q. Geographically weighted regression model for expressing tree growth relationships[J]. Journal of Northeast Forestry University,2012,40(6):129-140.
    [25]
    施明辉,赵翠薇,郭志华,等.基于SOM神经网络的白河林业局森林健康分等评价[J].生态学杂志,2011,30(6):1295-1303.
    [26]
    SHI M H, ZHAO C W, GUO Z H, et al. Forest health assessment based on self-organizing map neural network: a case study in Baihe Forestry Bureau, Jilin Province[J]. Chinese Journal of Ecology,2011,30(6):1295-1303.
    [27]
    郭志伟.白河林业局区域森林可持续经营研究[D].哈尔滨:东北林业大学,2003.
    [28]
    GUO Z W. Regional forest sustainable management: a case study from the Baihe Forestry Bureau[D]. Harbin: Northeast Forestry University,2003.
    [29]
    王济川,郭志刚.Logistic回归模型:方法与应用[M].北京:高等教育出版社,2001.
    [30]
    WANG J C, GUO Z G. Logistic regression models: methods and application[M]. Beijing: Higher Education Press,2001.
    [31]
    马建路,刘德君.天然红松林群落类型与立地因子相关性的研究[J].东北林业大学学报,1994,22(5):7-13.
    [32]
    MA J L, LIU D J. A study on correlativity between community types for natural Korean pine forest and site factors in Xiao Xing'an mountains[J]. Journal of Northeast Forestry University,1994,22(5):7-13.
    [33]
    肖兴威.影响亚热带东部森林结构的因子分析[J].东北林业大学学报,2004,32(5):19-34.
    [34]
    XIAO X W. Analysis on factors influencing the structure of forests in the East Subtropical Zone[J]. Journal of Northeast Forestry University,2004,32(5):19-34.
    [35]
    洪滔,张艳艳.福建省阔叶林林分年龄与平均胸径、蓄积量的关系[J].北华大学学报:自然科学版,2008,9(1):69-74.
    [36]
    HONG T, ZHANG Y Y. Relationship between mean DBH, volume and stand age of broad-leaved wood in Fujian province[J]. Journal of Beihua University :Natural Science Edition ,2008,9(1):69-74.
    [37]
    宋喜芳,李建平,胡希远,等.模型选择信息量准则AIC及其在方差分析中的应用[J].西北农林科技大学学报:自然科学版,2009,37(2):88-92.
    [38]
    SONG X F, LI J P, HU X Y, et al. Model selection criterion AIC and its application in ANOVA[J]. Journal of Northwest AF University: Natural Science Edition,2009,37(2):88-92.
    [39]
    王春红,李凤日,贾炜玮,等.基于非线性混合模型的红松人工林枝条生长[J].应用生态学报,2013,24(7):1945-1952.
    [40]
    WANG C H, LI F R, JIA W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology,2013,24(7):1945-1952.
    [41]
    谢花林,刘黎明,李波,等.土地利用变化的多尺度空间自相关性分析[J].地理学报,2006,61(4):389-400.
    [42]
    XIE H L, LIU L M, LI B, et al. Spatial autocorrelation analysis of multi-scale land-use changes: a case study in Ongniud Banner, inner Mongolic[J]. Acta Geographica Sinica,2006,61(4):389-400.
    [43]
    BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted local statistics applied to binary data[J]. Geographic Information Science,2002,2478:38-50.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1818) PDF downloads (33) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return