• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHAO Hui, WANG Sui, JIANG Jing, LIU Gui-feng. Screening of Populus simonii×Populus nigra WRKY70-interactive proteins by the yeast two-hybrid system[J]. Journal of Beijing Forestry University, 2016, 38(2): 44-51. DOI: 10.13332/j.1000-1522.20150162
Citation: ZHAO Hui, WANG Sui, JIANG Jing, LIU Gui-feng. Screening of Populus simonii×Populus nigra WRKY70-interactive proteins by the yeast two-hybrid system[J]. Journal of Beijing Forestry University, 2016, 38(2): 44-51. DOI: 10.13332/j.1000-1522.20150162

Screening of Populus simonii×Populus nigra WRKY70-interactive proteins by the yeast two-hybrid system

More Information
  • Received Date: May 10, 2015
  • Revised Date: June 05, 2015
  • Published Date: February 28, 2016
  • Populus simonii×Populus nigra WRKY70 (PsnWRKY70) is a salt stress responsive transcription factor. In order to further identify the proteins that interact with PsnWRKY70 in salt stress response pathway, we used P. simonii×P. nigra leaves treated by 140 mmol/L NaCl solution as materials to construct a homogeneous pGADT7-DEST yeast two-hybrid cDNA library by DSN. PsnWRKY70 gene was subcloned to pGBKT7 vector to construct BD-WRKY recombinant plasmid, and then the BD-WRKY plasmid was used as a bait to screen the yeast two-hybrid cDNA library of P. simonii×P. nigra. After twice screening tests and a rotary experiment, five proteins that interact with PsnWRKY70 were detected. We analyzed the conserved domains of the five proteins and found that there were two hypothetical proteins (HP1 and HP2, HP1 contains a ClpP domain), one cyclase associated protein (CAP1), one RNA recognition motif-containing family protein (RRM) and one Ulp1 protease family protein (Ulp1) among them. The cis-elements that exist in 2 000 bp upstream of the orthologous Populus trichocarpa genes of CAP1, HP1, RRM, HP2 and Ulp1 were also analyzed, and the results suggest that the promoter regions of all the five orthologous P. trichocarpa genes contained plenty of W-box which can specifically bind to WRKY transcription factors. GST-pull down technology was utilized to validate the direct interaction between the complete CAP1/HP1/RRM/HP2/Ulp1 proteins and PsnWRKY70. An equal amount of His-X (X: CAP1/HP1/RRM/HP2/Ulp1) fusion proteins was dropped into normal glutathione agarose resin and GST or GST-WRKY protein-bound glutathione agarose resin respectively, then the interactive proteins were separated by SDS-PAGE. The final Western blot analysis indicated that HP1, RRM and Ulp1 can directly interact with PsnWRKY70 in vitro, while CAP1 or HP2 cannot.
  • [1]
    LIU P L, MA Y M, LIU S. Variety selection and breeding and cultivation of poplar [M]. Harbin: Northeast Forestry University Press, 2003.
    [1]
    YAMAGUCHI S K, SHINOZAKI K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annu Rev Plant Biol, 2006, 57: 781-803.
    [2]
    VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations [J]. Curr Opin Biotechnol, 2005, 16(2): 123-132.
    [2]
    CHEN S, JIANG J, LI H Y, et al. The salt-responsive transcriptome of Populus simonii×Populus nigra via DGE [J]. Gene, 2012, 504(2): 203-212.
    [3]
    LI J. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense [J]. Plant Cell Online, 2004, 16(2): 319-331.
    [3]
    SINGH K B, FOLEY R C, SANCHEZ L O. Transcription factors in plant defense and stress responses [J]. Current Opinion in Plant Biology, 2002, 5(5): 430-436.
    [4]
    TRIPATHI P, RABARA R C, RUSHTON P J. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants [J]. Planta, 2014, 239(2): 255-266.
    [5]
    RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors [J]. Trends Plant Sci, 2010, 15(5): 247-258.
    [6]
    EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors [J]. Trends Plant Sci, 2000, 5(5): 199-206.
    [7]
    刘培林, 马伊民, 刘实. 杨树良种选育与栽培 [M]. 哈尔滨: 东北林业大学出版社, 2003.
    [9]
    ZHAO H, WANG S, CHEN S, et al.Phylogenetic and stress-responsive expression analysis of 20 WRKY genes in Populus simonii×Populus nigra [J]. Gene, 2015, 565(1): 130-139.
    [11]
    EULGEM T. Dissecting the WRKY web of plant defense regulators [J]. PLoS Pathog, 2006, 2(11): e126.
    [12]
    LI J, BRADER G, KARIOLA T, et al. WRKY70 modulates the selection of signaling pathways in plant defense [J]. Plant J, 2006, 46(3): 477-491.
    [13]
    BESSEAU S, LI J, PALVA E T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2012, 63(7): 2667-2679.
    [14]
    POPESCU S C, POPESCU G V, BACHAN, S, et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays [J]. Genes Dev, 2009, 23(1): 80-92.
    [15]
    LIANG W, YANG B, YU B J, et al. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.) [J]. BMC Genomics, 2013, 14: 392.
    [16]
    CHANG I F, CURRAN A, WOOLSEY R, et al. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana [J]. Proteomics, 2009, 9(11): 2967-2985.
    [17]
    PARK C Y, LEE J H, YOO J H, et al. WRKY group IId transcription factors interact with calmodulin [J]. FEBS Lett, 2005, 579(6): 1545-1550.
    [18]
    KIM K C, LAI Z, FAN B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense [J]. Plant Cell, 2008, 20(9): 2357-2371.
    [19]
    SHEN Q H, SAIJO Y, MAUCH S, et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses [J]. Science, 2007, 315: 1098-1103.
    [20]
    XU X, CHEN C, FAN B, et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors [J]. Plant Cell, 2006, 18(5): 1310-1326.
    [21]
    XIE Z, ZHANG Z L, ZOU X, et al. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells [J]. Plant J, 2006, 46(2): 231-242.
    [22]
    FIELDS S, SONG O. A novel genetic system to detect protein-protein interactions [J]. Nature, 1989, 340: 245-246.
    [23]
    LUBAN J, STEPHEN G. The yeast two-hybrid system for studying protein-protein interactions[J]. Current Opinion in Biotech-nology, 1995, 6(1): 59-64.
    [24]
    BUTLER N M, HANNAPEL D J. Promoter activity of polypyrimidine tract-binding protein genes of potato responds to environmental cues [J]. Planta, 2012, 236(6): 1747-1755.
    [25]
    CONTI L, PRICE G, ODONNELL E, et al. Small ubiquitin-like modifier proteases overly tolerant to salt1 and-2 regulate salt stress responses in Arabidopsis [J]. Plant Cell Online, 2008, 20(10): 2894-2908.
    [26]
    RAKWAL R, AGRAWAL G K, KUBO A, et al. Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide [J]. Environmental and Experimental Botany, 2003, 49(3): 223-235.
    [27]
    CIOLKOWSKI I, WANKE D, BIRKENBIHL R P, et al. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function [J]. Plant Mol Biol, 2008, 68(1-2): 81-92.
  • Related Articles

    [1]Li Zhu, Jiang Jiali, Lü Jianxiong. Tensile creep characteristics of compression wood and normal wood under different temperatures and loads[J]. Journal of Beijing Forestry University, 2024, 46(12): 138-145. DOI: 10.12171/j.1000-1522.20240277
    [2]Wu Haoyang, Niu Jianzhi, Wang Di, Qiu Qihuang, Yang Tao, Yang Shujian. Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility[J]. Journal of Beijing Forestry University, 2023, 45(6): 69-81. DOI: 10.12171/j.1000-1522.20220283
    [3]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Gel permeation chromatography (GPC)high performance liquid chromatographic (HPLC) determination of cytokinin in plant tissues.[J]. Journal of Beijing Forestry University, 2012, 34(6): 155-159.
    [4]QIU Er-fa, XU Fei, WANG Cheng, DONG Jian-wen, WU Yong-shu, . Population distribution and structure characteristics of village roadside forest in Fujian Province, eastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 68-74.
    [5]KONG Ying, SUN Ming, PAN Hu-tang, ZHANG Qi-xiang. Advances in metabolism and regulation of floral scent.[J]. Journal of Beijing Forestry University, 2012, 34(2): 146-154.
    [6]NIAN Hong-li, LI He, CAO Dong-dong, CAO Jian-kang, JIANG Wei-bo. Determination of phenolic compounds in jujube peels at different maturity stages by high performance liquid chromatography.[J]. Journal of Beijing Forestry University, 2011, 33(1): 139-143.
    [7]WANG Wei, ZHENG Xiao-xian, NING Yang-cui. Structural characteristics of typical water conservation forests in mountain areas of Beijing.[J]. Journal of Beijing Forestry University, 2011, 33(1): 60-63.
    [8]HU Xiao-dan, ZHANG De-quan, SUN Ai-dong, WANG Jian-zhong, LIU Yu-jun. Separation of perilla ketone by high speed countercurrent chromatography[J]. Journal of Beijing Forestry University, 2007, 29(5): 170-172. DOI: 10.13332/j.1000-1522.2007.05.031
    [9]GAO Lin, WANG Nai-kang, GAO Yong. Fuzzy control on air-suction seeding system in the seedling production line[J]. Journal of Beijing Forestry University, 2007, 29(4): 75-79. DOI: 10.13332/j.1000-1522.2007.04.018
    [10]CHANG De-long, SONG Zhan-qian, HUANG Wen-hao, HU Wei-hua, LI Fu-hai, ZHANG Quan-lai. Impacts of fungi on chemical components and physical structure of Paulownia elongata wood[J]. Journal of Beijing Forestry University, 2006, 28(3): 145-149.
  • Cited by

    Periodical cited type(17)

    1. 高杰. 天然林保护对生态系统服务功能的影响. 农业灾害研究. 2024(02): 232-234 .
    2. 力佳琪,麦强盛,王俊超. 玉白顶自然保护区森林生态价值评估. 农业与技术. 2024(18): 67-71 .
    3. 潘丰十,牛香,郭珂. 呼伦贝尔市典型生态产品禀赋与价值化实现路径优化. 林业科学. 2024(12): 146-157 .
    4. 严雨桐,陈花丹,游巍斌,刘进山,蔡昌棠,何东进. 基于能值分析的天宝岩泥炭沼泽生态系统服务价值评估. 生态与农村环境学报. 2023(03): 335-343 .
    5. 李保杰,褚帅,顾和和. 淮海经济区生态系统服务价值时空分异特征研究. 地域研究与开发. 2023(02): 167-172 .
    6. 魏媛,吴长勇,洪林. 碳中和导向下贵州省森林资源生态价值评估及生态补偿研究. 自然资源情报. 2023(04): 44-50 .
    7. 赵玉堂. 普达措国家公园森林生态系统服务价值评估与分析. 林业调查规划. 2023(03): 208-213 .
    8. 邓紫君,刘鑫,祖浩然,苏闪闪,陈颖,罗俊毅,闫文德,张翔,王明旭. 湖南省森林型国家级自然保护区森林生态系统服务功能价值评估. 湖南林业科技. 2023(04): 72-80 .
    9. 李连强,杨会侠,丁国泉,李虹谕,白荣芬,王品. 辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同. 北京林业大学学报. 2023(09): 83-94 . 本站查看
    10. 白晓航,施佳颖. 黑龙江丰林国家级自然保护区红松+紫椴+硕桦群系优势树种生态位特征与种间联结分析. 园林. 2023(10): 14-21 .
    11. 李超,谢飞,苏学威,罗传文. 凉水国家级自然保护区森林生态系统服务功能评估. 中国林副特产. 2023(06): 17-18 .
    12. 党俊. 移植栽培技术在自然保护区天然林保护工程生态修复中的应用. 环境保护与循环经济. 2023(12): 68-71 .
    13. 张颖,刘平辉,朱传民,张林颖. 基于NPP的抚州市生态系统服务功能重要性评价. 贵州农业科学. 2022(02): 133-140 .
    14. 胡建忠. 对我国系统种植开发沙棘的回顾与建议. 防护林科技. 2022(04): 75-77 .
    15. 王晓康. 山西省关帝山国有林区森林生态系统服务功能价值估算研究. 中国农学通报. 2022(23): 49-55 .
    16. 任志华,秦磊. 黑龙江省乡村振兴战略实施下的乡村发展策略. 规划师. 2022(09): 139-144 .
    17. 张卫民. 中国自然保护地生态资产核算框架研究. 自然保护地. 2021(02): 22-30 .

    Other cited types(15)

Catalog

    Article views (2043) PDF downloads (48) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return