• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Haoyang, Niu Jianzhi, Wang Di, Qiu Qihuang, Yang Tao, Yang Shujian. Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility[J]. Journal of Beijing Forestry University, 2023, 45(6): 69-81. DOI: 10.12171/j.1000-1522.20220283
Citation: Wu Haoyang, Niu Jianzhi, Wang Di, Qiu Qihuang, Yang Tao, Yang Shujian. Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility[J]. Journal of Beijing Forestry University, 2023, 45(6): 69-81. DOI: 10.12171/j.1000-1522.20220283

Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility

More Information
  • Received Date: July 12, 2022
  • Revised Date: April 21, 2023
  • Available Online: April 27, 2023
  • Published Date: June 24, 2023
  •   Objective  This paper aims to clarify the characteristics of soil macropore structure and its response relationship with aggregate stability and erodibility in the ice-marginal landforms of Liaodong Mountain Area of northeastern China, and to investigate the distribution pattern of forestland macropores and soil stability and soil erosion resistance.
      Method  Soil under typical deciduous broadleaved forest, coniferous forest and mixed coniferous and broadleaved forest in Liaodong Laotudingzi Nature Reserve were selected for the study. Combined with the soil column water penetration experiment and Poiseulle equation, indicators such as the number and radius of macropores were calculated, and indicators such as aggregate structure and soil stability were measured by wet sieve method.
      Result  (1) The distribution characteristics of macropores varied significantly among different forest types. Compared with coniferous forests, broadleaved forests and mixed coniferous and broadleaved forests had a larger radius range and a larger number of macropores. And the soil macropore structure of mixed coniferous and broadleaved forests varied stably with soil depth. (2) The overall distribution of soil erodibility factor K value in forest land ranged from 0.016 to 0.043, where broadleaved forest < mixed coniferous and broadleaved forest < coniferous forest, with the increase of soil depth, K value gradually increased and soil erosion resistance decreased. (3) Correlation analysis showed that the number of macropores in the diameter class range of 0.3 to 1.9 mm was highly significantly and positively correlated with the water stability of aggregates (P < 0.01). (4) Path analysis showed that the larger the number of macropores in the diameter class range of 0.3−1.9 mm (especially 0.7−1.1 mm) was, the stronger the soil erosion resistance was. When the size of macropores > 1.9 mm, the larger the number of macropores per unit area and the larger the radius were, the worse the soil erosion resistance was.
      Conclusion  Soil macropores are closely related to soil structural stability and erodibility. On the pore scale, the number of macropores is positively correlated with soil stability and erosion resistance in the diameter class range of 0.3−1.9 mm; after the diameter class > 1.9 mm, the increase in the number and radius of macropores per unit area reduces the stability of soil structure and erosion resistance; the macropore structure of soil in mixed coniferous and broadleaf forest is more stable, which can provide scientific guidance and theoretical basis for the management of forest stands and evaluation of soil erosion resistance in the ice-marginal terrain of Liaodong area of northeastern China.
  • [1]
    Li G, Lin H. Addressing two bottlenecks to advance the understanding of preferential flow in soils[J]. Advances in Agronomy, 2018, 147: 61−117.
    [2]
    Mohammed A A, Kurylyk B L, Cey E E, et al. Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework[J/OL]. Vadose Zone Journal, 2018, 17(1): 180084[2022-03-21]. https://doi.org/10.2136/vzj2018.04.0084.
    [3]
    秦耀东, 任理, 王济. 土壤中大孔隙流研究进展与现状[J]. 水科学进展, 2000, 11(2): 203−207. doi: 10.3321/j.issn:1001-6791.2000.02.016

    Qin Y D, Ren L, Wang J. Review on the study of macropore flow in soil[J]. Advances in Water Science, 2000, 11(2): 203−207. doi: 10.3321/j.issn:1001-6791.2000.02.016
    [4]
    牛健植, 余新晓, 张志强. 优先流研究现状及发展趋势[J]. 生态学报, 2006, 26(1): 231−243. doi: 10.3321/j.issn:1000-0933.2006.01.030

    Niu J Z, Yu X X, Zhang Z Q. The present and future research on preferential flow[J]. Acta Ecologica Sinica, 2006, 26(1): 231−243. doi: 10.3321/j.issn:1000-0933.2006.01.030
    [5]
    Nimmo J R. The processes of preferential flow in the unsaturated zone[J]. Soil Science Society of America Journal, 2021, 85(1): 1−27. doi: 10.1002/saj2.20143
    [6]
    Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research, 2013, 18(5): 1311−1325.
    [7]
    Zhang Y, Zhang Z, Ma Z, et al. A review of preferential water flow in soil science[J]. Canadian Journal of Soil Science, 2018, 98: 2018−2046.
    [8]
    Ferraro F, Agosta F, Prasad M, et al. Pore space properties in carbonate fault rocks of peninsular Italy[J]. Journal of Structural Geology, 2020, 130: 103911−103913. doi: 10.1016/j.jsg.2019.103911
    [9]
    Schlüter S, Sammartino S, Koestel J. Exploring the relationship between soil structure and soil functions via pore-scale imaging[J/OL]. Geoderma, 2020, 370: 114370[2023−01−21]. https://doi.org/10.1016/j.geoderma.2020.114370.
    [10]
    阚晓晴, 程金花, 王葆, 等. 基于工业CT扫描的不同类型土壤孔隙结构研究[J]. 西南林业大学学报(自然科学), 2021, 41(4): 25−34.

    Kan X Q, Cheng J H, Wang B, et al. Soil structural pore network under different soil types by industrial computed tomography[J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(4): 25−34.
    [11]
    Budhathoki S, Lamba J, Srivastava P, et al. Using X-ray computed tomography to quantify variability in soil macropore characteristics in pastures[J/OL]. Soil and Tillage Research, 2022, 215: 105194[2023−01−21]. https://doi.org/10.1016/j.still.2021.105194.
    [12]
    Huang N, Liu R, Jiang Y. Evaluating the effect of aperture variation on the hydraulic properties of the three-dimensional fractal-like tree network model[J/OL]. Fractals, 2020, 28(6): 2050112[2023−01−21]. https://doi.org/10.1142/S0218348X20501121.
    [13]
    Mohammed A A, Cey E E, Hayashi M, et al. Simulating preferential flow and snowmelt partitioning in seasonally frozen hillslopes[J/OL]. Hydrological Processes, 2021, 35(8): e14277[2023−01−21]. https://doi.org/10.1002/hyp.14277.
    [14]
    Patra S, Kaushal R, Singh D, et al. Surface soil hydraulic conductivity and macro-pore characteristics as affected by four bamboo species in northwestern Himalaya, India[J]. Ecohydrology & Hydrobiology, 2022, 22(1): 188−196.
    [15]
    Cerdà A, Lucas-Borja M E, Franch-Pardo I, et al. The role of plant species on runoff and soil erosion in a mediterranean shrubland[J/OL]. Science of the Total Environment, 2021, 799: 149218[2023−01−21]. https://doi.org/10.1016/j.scitotenv.2021.149218.
    [16]
    Starkloff T, Larsbo M, Stolte J, et al. Quantifying the impact of a succession of freezing-thawing cycles on the pore network of a silty clay loam and a loamy sand topsoil using X-ray tomography[J]. Catena, 2017, 156: 365−374. doi: 10.1016/j.catena.2017.04.026
    [17]
    Yang Z G, Hu X, Li X Y, et al. Soil macropore networks derived from X-ray computed tomography in response to typical thaw slumps in Qinghai-Tibetan Plateau, China[J]. Journal of Soils and Sediments, 2021, 21(8): 2845−2854.
    [18]
    Tao Y, Zou Z, Guo L, et al. Linking soil macropores, subsurface flow and its hydrodynamic characteristics to the development of Benggang erosion[J/OL]. Journal of Hydrology, 2020, 586: 124829[2023−01−21]. https://doi.org/10.1016/j.jhydrol.2020.124829.
    [19]
    李娅芸, 刘雷, 安韶山, 等. 应用Le Bissonnais法研究黄土丘陵区不同植被区及坡向对土壤团聚体稳定性和可蚀性的影响[J]. 自然资源学报, 2016, 31(2): 287−298. doi: 10.11849/zrzyxb.20141207

    Li Y Y, Liu L, An S S, et al. Research on the effect of vegetation and slope aspect on the stability and erodibility of soil aggregate in loess hilly region based on Le Bissonnais Method[J]. Journal of Natural Resources, 2016, 31(2): 287−298. doi: 10.11849/zrzyxb.20141207
    [20]
    俞陈辉, 田雪, 刘鑫铭, 等. 泥石流流域失稳性坡面土壤抗蚀性评价[J]. 水土保持学报, 2022, 36(4): 13−21.

    Yu C H, Tian X, Liu X M, et al. Evaluation of soil anti-erodibility of unstable slope in debris flow basin[J]. Journal of Soil and Water Conservation, 2022, 36(4): 13−21.
    [21]
    朱梦雪, 赵洋毅, 王克勤, 等. 中亚热带不同演替森林群落土壤结构分形特征对大孔隙的影响[J]. 林业科学研究, 2022, 35(2): 67−77.

    Zhu M X, Zhao Y Y, Wang K Q, et al. Effect of fractal characteristics of soil structure on macropores in different succession forest communities in mid-subtropical region[J]. Forest Research, 2022, 35(2): 67−77.
    [22]
    Wen S, Wang J. Earthworm burrowing activity and its effects on soil hydraulic properties under different soil moisture conditions from the Loess Plateau, China[J/OL]. Sustainability, 2020: 12(21): 9303[2023−01−21]. https://doi.org/10.3390/su12219303.
    [23]
    Hallam J, Holden J, Robinson D A, et al. Effects of winter wheat and endogeic earthworms on soil physical and hydraulic properties[J]. Geoderma, 2021, 400: 115126. doi: 10.1016/j.geoderma.2021.115126
    [24]
    Sun F, Lu S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 26−33. doi: 10.1002/jpln.201200639
    [25]
    Roesch A, Weisskopf P, Oberholzer H, et al. An approach for describing the effects of grazing on soil quality in life-cycle assessment[J/OL]. Sustainability, 2019, 11 (18): 4870[2023−01−21]. https://doi.org/10.3390/su11184870.
    [26]
    Leuther F, Schlüter S. Impact of freeze-thaw cycles on soil structure and soil hydraulic properties[J]. Soil, 2021, 7(1): 179−191. doi: 10.5194/soil-7-179-2021
    [27]
    Yuan K Z, Ni W K, Lü X, et al. Permeability characteristics and structural evolution of compacted loess under different dry densities and wetting-drying cycles[J/OL]. PLoS ONE, 2021, 16(6): e253508[2023−01−21]. https://doi.org/10.1371/journal.pone.0253508.
    [28]
    弋灵均, 张华, 侯荣, 等. 辽东山地古石河冰缘地貌不同植被类型表层土壤特性[J]. 水土保持通报, 2017, 37(2): 7−16. doi: 10.13961/j.cnki.stbctb.20170210.001

    Yi L J, Zhang H, Hou R, et al. Surface soil characteristics of different vegetation types of ancient block stream-periglacial landform at mountain areas in eastern Liaoning Province[J]. Bulletin of Soil and Water Conservation, 2017, 37(2): 7−16. doi: 10.13961/j.cnki.stbctb.20170210.001
    [29]
    朱岩, 张华, 朱夏夏, 等. 辽东山地老秃顶子石流坡地貌土壤−植物系统分异特征[J]. 生态科学, 2017, 36(2): 68−75.

    Zhu Y, Zhang H, Zhu X X, et al. The characteristics and heterogeneities of soil-plant system of rock slope topography in Laotudingzi Mountain[J]. Ecological Science, 2017, 36(2): 68−75.
    [30]
    郭文体, 陈丽华, 周娟, 等. 老秃顶子保护区水源林主要乔木树种种间关系[J]. 水土保持通报, 2014, 34(1): 79−85. doi: 10.13961/j.cnki.stbctb.2014.01.002

    Guo W T, Chen L H, Zhou J, et al. Interspecific relationships among main tree species of water conserving forest in Laotudingzi Natural Reserve[J]. Bulletin of Soil and Water Conservation, 2014, 34(1): 79−85. doi: 10.13961/j.cnki.stbctb.2014.01.002
    [31]
    朱夏夏, 张华, 朱岩, 等. 老秃顶子石河冰缘地貌森林群落物种多样性及其影响因素[J]. 植物科学学报, 2016, 34(1): 67−77. doi: 10.11913/PSJ.2095-0837.2016.10067

    Zhu X X, Zhang H, Zhu Y, et al. Forest community species diversity and the influencing factors in the rock stream periglacial landforms of Mt. Laotudingzi[J]. Plant Science Journal, 2016, 34(1): 67−77. doi: 10.11913/PSJ.2095-0837.2016.10067
    [32]
    杨培岭, 罗远培. 用粒级的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896. doi: 10.3321/j.issn:0023-074X.1993.20.010

    Yang P L, Luo Y P. Soil fractal characteristics characterized by the weight distribution of particle size[J]. Chinese Science Bulletin, 1993, 38(20): 1896. doi: 10.3321/j.issn:0023-074X.1993.20.010
    [33]
    Shirazi M A, Boersma L. A unifying quantitative analysis of soil texture 1[J]. Soil Science Society of America Journal, 1984, 48(1): 142−147. doi: 10.2136/sssaj1984.03615995004800010026x
    [34]
    Radulovich R, Solorzano E, Sollins P. Soil macropore size distribution from water breakthrough curves[J]. Soil Science Society of America Journal, 1989, 53(2): 556−559. doi: 10.2136/sssaj1989.03615995005300020042x
    [35]
    Pezzotti D, Peli M, Sanzeni A, et al. Seasonality of earthworm macropores in a temperate alpine area[J]. Eurasian Soil Science, 2021, 54(12): 1935−1944. doi: 10.1134/S1064229321130032
    [36]
    Jačka L, Walmsley A, Kovář M, et al. Effects of different tree species on infiltration and preferential flow in soils developing at a clayey spoil heap[J/OL]. Geoderma, 2021, 403: 115372[2022−10−24]. https://doi.org/10.1016/j.geoderma.2021.115372.
    [37]
    Keller N, van Meerveld I, Ghazoul J, et al. Dung beetles as hydrological engineers: effects of tunnelling on soil infiltration[J]. Ecological Entomology, 2022, 47(1): 84−94. doi: 10.1111/een.13094
    [38]
    黄娟, 邓羽松, 马占龙, 等. 桂东南花岗岩丘陵区不同土地利用方式土壤大孔隙特征[J]. 水土保持学报, 2021, 35(2): 80−86. doi: 10.13870/j.cnki.stbcxb.2021.02.012

    Huang J, Deng Y S, Ma Z L, et al. Characteristics of soil macropores in granite hilly region area with different land use types in southeast Guangxi[J]. Journal of Soil and Water Conservation, 2021, 35(2): 80−86. doi: 10.13870/j.cnki.stbcxb.2021.02.012
    [39]
    王金悦, 邓羽松, 李典云, 等. 连栽桉树人工林土壤大孔隙特征及其对饱和导水率的影响[J]. 生态学报, 2021, 41(19): 7689−7699.

    Wang J Y, Deng Y S, Li D Y, et al. Characteristics of soil macropores and their influence on saturated hydraulic conductivity of successive eucalyptus plantation[J]. Acta Ecologica Sinica, 2021, 41(19): 7689−7699.
    [40]
    孟晨, 牛健植, 骆紫藤, 等. 华北土石山区森林土壤大孔隙对土壤理化性质及根系的响应[J]. 水土保持学报, 2019, 33(3): 94−100. doi: 10.13870/j.cnki.stbcxb.2019.03.015

    Meng C, Niu J Z, Luo Z T, et al. Response of soil macropore to soil phychemical properties and root in forest in rocky mountain area of north China[J]. Journal of Soil and Water Conservation, 2019, 33(3): 94−100. doi: 10.13870/j.cnki.stbcxb.2019.03.015
    [41]
    祁子寒, 王云琦, 王玉杰, 等. 根系对浅表层土大孔隙分布特征及饱和渗透性的影响[J]. 水土保持学报, 2021, 35(5): 94−100. doi: 10.13870/j.cnki.stbcxb.2021.05.014

    Qi Z H, Wang Y Q, Wang Y J, et al. Effect of root system on macropores distribution and saturated permeability of surface soil[J]. Journal of Soil and Water Conservation, 2021, 35(5): 94−100. doi: 10.13870/j.cnki.stbcxb.2021.05.014
    [42]
    冯璐, 丁康, 屈媛媛, 等. 黄土塬边坡植被类型对土壤孔隙的影响[J]. 草业科学, 2020, 37(4): 625−634. doi: 10.11829/j.issn.1001-0629.2019-0514

    Feng L, Ding K, Qu Y Y, et al. The influence of loess tableland slope vegetation type on soil pore characteristics[J]. Pratacultural Science, 2020, 37(4): 625−634. doi: 10.11829/j.issn.1001-0629.2019-0514
    [43]
    Kochiieru M, Lamorski K, Feiza V, et al. Quantification of the relationship between root parameters and soil macropore parameters under different land use systems in retisol[J]. International Agrophysics, 2020, 34(3): 301−308. doi: 10.31545/intagr/123266
    [44]
    Zheng Y, Chen N, Can N Z, et al. Soil macropores affect the plant biomass of alpine grassland on the northeastern Tibetan Plateau[J/OL]. Frontiers in Ecology and Evolution, 2021, 9[2022−10−24]. https://doi.org/10.3389/fevo.2021.678186.
    [45]
    Guo X, Meng M, Zhang J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J/OL]. Scientific Reports, 2016, 6: 29607[2022−10−24]. https://doi.org/10.1038/srep29607.
    [46]
    Ji Y, He Y, Shao J, et al. Dissolved organic carbon flux is driven by plant traits more than climate across global forest types[J/OL]. Forests, 2022: 13(7), 1119[2022−10−24]. https://doi.org/10.3390/f13071119.
    [47]
    涂志华, 范志平, 孙学凯, 等. 大伙房水库流域不同植被类型枯落物层和土壤层水文效应[J]. 水土保持学报, 2019, 33(1): 127−133. doi: 10.13870/j.cnki.stbcxb.2019.01.021

    Tu Z H, Fan Z P, Sun X K, et al. Hydrological effects of litter layer and soil layer in different vegetation types in Dahuofang Watershed[J]. Journal of Soil and Water Conservation, 2019, 33(1): 127−133. doi: 10.13870/j.cnki.stbcxb.2019.01.021
    [48]
    陈涛, 周利军, 齐实, 等. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报, 2021, 38(6): 1161−1169. doi: 10.11833/j.issn.2095-0756.20210142

    Chen T, Zhou L J, Qi S, et al. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying Mountain Area[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1161−1169. doi: 10.11833/j.issn.2095-0756.20210142
    [49]
    Lan J. Changes of soil aggregate stability and erodibility after cropland conversion in degraded karst region[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(4): 3333−3345. doi: 10.1007/s42729-021-00609-7
    [50]
    Mohamed I, Bassouny M A, Abbas M H H, et al. Rice straw application with different water regimes stimulate enzymes activity and improve aggregates and their organic carbon contents in a paddy soil[J/OL]. Chemosphere, 2021, 274: 129971[2022−10−24]. https://doi.org/10.1016/j.chemosphere.2021.129971.
    [51]
    Lucas M. Perspectives from the fritz-scheffer awardee 2020: the mutual interactions between roots and soil structure and how these affect rhizosphere processes[J]. Journal of Plant Nutrition and Soil Science, 2022, 185(1): 8−18. doi: 10.1002/jpln.202100385
    [52]
    Barbosa L A P, Gerke K M, Gerke H H. Modelling of soil mechanical stability and hydraulic permeability of the interface between coated biopore and matrix pore regions[J/OL]. Geoderma, 2022, 410: 115673[2022−10−24]. https://doi.org/10.1016/j.geoderma.2021.115673.
    [53]
    Yang Y, Wu J, Zhao S, et al. Impact of long-term sub-soiling tillage on soil porosity and soil physical properties in the soil profile[J]. Land Degradation & Development, 2021, 32(10): 2892−2905.
    [54]
    Bhattacharyya R, Rabbi S M F, Zhang Y, et al. Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses[J/OL]. Science of The Total Environment, 2021, 778: 146286[2022−10−24]. https://doi.org/10.1016/j.scitotenv.2021.146286.
    [55]
    Tang H, Liu C, Wang N, et al. Influence of acidic substances on compression deformation characteristics of loess[J/OL]. Advances in Civil Engineering, 2021: 6614391[2022−10−24]. https://doi.org/10.1155/2021/6614391.
  • Related Articles

    [1]Zhou Yunhong, Li Jianliang, Wang Lidong, Zou Jinlong, Liu Yanqing, Lu Jingxing, Zhao Wanning, Jia Zhongkui. Effects of thinning on litter decomposition of Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(12): 29-37. DOI: 10.12171/j.1000-1522.20210114
    [2]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [3]Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057
    [4]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [5]Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037
    [6]ZHANG Tian, ZHU Yu-jie, DONG Xi-bin. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 1-12. DOI: 10.13332/j.1000-1522.20170187
    [7]SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
    [8]ZHANG Yi, WANG Chun-mei, XU Ke, HAN Jin-feng, YANG Xin-tong, LIN Jia-li. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 54-63. DOI: 10.13332/j.1000-1522.20160048
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Guo-lei, LIU Yong, XU Yang, GUO Bei, ZHANG Ke-dong, ZHAO Shuang-rong. Effects of thinning intensity on the development of undergrowth in Pinus tabulaeformis plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 70-75.
  • Cited by

    Periodical cited type(10)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 倪靖峰,吕世琪,王占印,周超凡,刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性. 陆地生态系统与保护学报. 2024(01): 1-10 .
    3. 徐罗,亢新刚,陈月明,刘旭. 依据单因子评价体系的天然云冷杉针阔混交林立地质量评价. 东北林业大学学报. 2024(12): 25-31 .
    4. 周甲敏,刘兆刚,董灵波. 基于蓄积潜在生产力的小兴安岭阔叶混交林立地质量评价. 北京林业大学学报. 2024(12): 21-29 . 本站查看
    5. 龚宇浩,孙益群,董晨,胡彦蓉,高威芳. 基于广义代数差分法和因子选择的杉木人工林立地质量评价. 浙江农林大学学报. 2023(06): 1282-1291 .
    6. 沈剑波,王应宽,雷相东,雷渊才,汪求来,叶金盛. 基于BP神经网络的广东省针阔混交异龄林立地质量评价. 北京林业大学学报. 2019(05): 38-47 . 本站查看
    7. 秦倩倩,王海燕,李翔,雷相东,解雅麟,郑永林,耿琦. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素. 生态学报. 2019(12): 4519-4529 .
    8. 卢立华,冯益明,农友,李华,农良书,孙冬婧,黄德卫,明安刚. 基于林班尺度的森林立地类型划分与质量评价. 林业资源管理. 2018(02): 48-57 .
    9. 轩俊伟,朱静. 天山云杉立地指数地统计空间分析. 林业资源管理. 2017(03): 46-50 .
    10. 倪伟星. 闽北湿地松人工林立地质量精确评价. 武夷学院学报. 2017(12): 61-67 .

    Other cited types(9)

Catalog

    Article views (454) PDF downloads (75) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return