• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LI Chao, LÜ Xian-wei, TU Wen-jun, ZHANG Yi-zhuo. Design of an intelligent wood surface grading system based on computer vision[J]. Journal of Beijing Forestry University, 2016, 38(3): 102-109. DOI: 10.13332/j.1000-1522.20150294
Citation: LI Chao, LÜ Xian-wei, TU Wen-jun, ZHANG Yi-zhuo. Design of an intelligent wood surface grading system based on computer vision[J]. Journal of Beijing Forestry University, 2016, 38(3): 102-109. DOI: 10.13332/j.1000-1522.20150294

Design of an intelligent wood surface grading system based on computer vision

More Information
  • Received Date: August 06, 2015
  • Published Date: March 30, 2016
  • An intelligent system for wood surface detection is designed, which integrates plate transmission, image acquisition, image recognition and sorting equipment. The convey belt is used to carry plates, CCD is employed to acquire images, the recognition program is written by MFC and Open CV in the touch screen industrial computer, and the solenoid valve is controlled by STM32 according to recognition results. In the image localization process, the integral projection method is used to determine the boundary of the plates. In the color classification, the mean, variance and skewness features of the L*a*b* space are extracted to express color information. In the defect detection, a segmentation method based on texture filling is proposed. The texture of the image is extracted and the background color is used to fade the texture part which can reduce impact of texture’s effect, and then weighted threshold is used to segment the defects. After segmentation, the features of area, the edge gray value, the internal gray value and the length and width ratio are used to express defects. In texture recognition, the texture feature extraction method based on Contourlet transform is proposed. By Contourlet transform, one sub-band, six intermediate frequency sub-bands and eight high frequency sub-bands are obtained. By calculating the mean and variance of the low frequency and intermediate frequency coefficients, a 22-dimension feature vector is obtained with the energy of high frequency coefficient matrix. Finally, a SVM classifier is designed to recognize the color, defect and texture. A total of 300 samples are used in the test experiment, when convey speed is under 1.5 m/s, and the classification rate of color is 100%, the recognition rate of live knot, dead knot and crack are 92.2%, 95.6% and 93.3% respectively, and the recognition rate of radial texture and tangential texture are 93.9% and 92.8% respectively.
  • [1]
    ZHANG Y Z,MA L,XU L, et al. Wood board texture classification based on genetic fusion of wavelet and curvelet features[J]. Journal of Beijing Forestry University, 2014, 36(2):119-124.
    [1]
    张怡卓,马琳,许雷,等.基于小波与曲波遗传融合的木材纹理分类[J].北京林业大学学报,2014,36(2):119-124.
    [2]
    QIAN Y,BAI R L, NI J, et al.Floor hierarchical classification research based on color characteristics[J].Computer Engineering and Applications,2013,49(13):245-252.
    [2]
    RUZ G A,ESTEVEZ P A, RAMIREZ P A.Automated visual inspection system for wood defect classification using computational intelligence techniques[J]. International Journal of Systems Science,2009,40(2):163-172.
    [3]
    BAI X B,ZOU L H.Segmentation method of timber surface defects based on gray level-gradient co-occurrence matrix[J]. Forest Engineering,2007,23(2):16-18.
    [3]
    钱勇,白瑞林,倪健,等. 基于颜色特征的地板层次分类研究[J].计算机工程与应用,2013,49(13):245-252.
    [4]
    WANG A C,CAO L. Fast recognition of veneer defect image based on improved contour model[J].Computer Engineering,2013,39(1):1-6.
    [4]
    白雪冰,邹丽晖.基于灰度-梯度共生矩阵的木材表面缺陷分割方法[J].森林工程,2007,23(2):16-18.
    [5]
    王阿川,曹琳. 基于改进轮廓模型单板缺陷图像快速识别方法[J]. 计算机工程,2013,39(1):1-6.
    [5]
    XIE Y H,QIAN Y H,BAI X B.Classification of wood texture based on wavelet transform and fractal dimension[J]. Journal of Northeast Forestry University,2010,38(12):118-120.
    [6]
    XU L,WANG M,WEN Y. Moving object detection using LAB color space[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition),2013,41(Suppl.1):219-222.
    [6]
    谢永华,钱玉恒,白雪冰.基于分形理论木材表面缺陷识别的研究[J]. 东北林业大学学报,2010,38(12):118-120.
    [7]
    许莉,王敏,温月. 基于Lab颜色空间的运动目标检测[J]. 华中科技大学学报(自然科学版),2013,41(增刊1):219-222.
    [7]
    XU K,LI Y.An image search approach based on local main color feature and texture feature[J]. Journal of Xi'an Shiyou University(Nature Science Edition),2005,20(2):77-79.
    [8]
    ZHANG Y Z,CAO J,XU L,et al.Wood floor defects segmentation and recognition based on morphological and SOM[J].Electric Machines and Control,2013,17(4):116-120.
    [8]
    徐琨,李燕. 基于分块颜色矩和纹理特征的图像检索方法[J]. 西安石油大学学报(自然科学版),2005,20(2):77-79.
    [9]
    FENG G H. Parameter optimizing for support vector machines classification[J].Computer Engineering and Applications,2011,47(3):123-124,128.
    [9]
    张怡卓,曹军,许雷,等.实木地板缺陷形态学分割与SOM识别[J].电机与控制学报,2013,17(4):116-120.
    [10]
    DO M N, VETTERLI M. The contouelet transform: an efficient directional multiresolution image representstion[J].IEEE Transaction on Image Processing,2005,14(2):2091-2106.
    [11]
    DO M N.Directional multiresolution image representations[D]. Canberra: University of Canberra, 2001.
    [12]
    奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用,2011,47(3):123-124,128.
    [13]
    CHANG C C, LIN C J.LIBSVM:a library guide to support vector machines[EB/OL].[2009-06-07]. http:∥www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
  • Related Articles

    [1]Yang Can, Fan Xijian, Zhang Jiuyu. SSFYOLO: a trunk detection algorithm for complex forest scenarios[J]. Journal of Beijing Forestry University, 2025, 47(2): 132-142. DOI: 10.12171/j.1000-1522.20240145
    [2]Zhang Dian, Yu Yongzhu, Guan Cheng, Wang Hui, Zhang Houjiang, Xin Zhenbo. Nondestructive testing of defect condition of wall wood columns in Yangxin Hall of the Palace Museum, Beijing[J]. Journal of Beijing Forestry University, 2021, 43(5): 127-139. DOI: 10.12171/j.1000-1522.20210028
    [3]Wei Xiwen, Sun Liping, Xu Shuzheng, Yang Yang, Du Chunxiao. Quantitative detection of log defects based on stress wave propagation velocity model[J]. Journal of Beijing Forestry University, 2020, 42(5): 143-154. DOI: 10.12171/j.1000-1522.20190420
    [4]LI Chao, LIU Si-jia, CAO Jun, YU Hui-ling, ZHANG Yi-zhuo. The method of wood defect recognition based on PSO feature selection and compressed sensing[J]. Journal of Beijing Forestry University, 2015, 37(7): 117-122. DOI: 10.13332/j.1000-1522.20140385
    [5]DU Xiao-chen, YIN Jian-xin, QI Heng-nian, FENG Hai-lin. Defective region detection for knot of wood based on color histogram and LBP-TD operator.[J]. Journal of Beijing Forestry University, 2012, 34(3): 71-75.
    [6]HU Chuan-shuang, WEN Wei, ZHOU Hai-bin, YUN Hong. Detection of simulated defects of wood beams by using the differences of local modal flexibility[J]. Journal of Beijing Forestry University, 2011, 33(5): 122-125.
    [7]WANG Tian-long, CHEN Yong-ping, LIU Xiu-ying, JIANG En-lai, YU Ru-long. Preliminary study on detection of wood structure defects and evaluation of residual elastic modulus[J]. Journal of Beijing Forestry University, 2010, 32(3): 141-145.
    [8]GAO Kai, LI Wen-bin, KAN Jiang-ming. An automatic measuring method for the trunk curvature of standing tree based on computer vision[J]. Journal of Beijing Forestry University, 2007, 29(4): 10-14. DOI: 10.13332/j.1000-1522.2007.04.003
    [9]KAN Jiang-ming, LI Wen-bin, SUN Ren-shan. Computer vision based method of automatic measurement of trunk and branch diameters of standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 5-9. DOI: 10.13332/j.1000-1522.2007.04.002
    [10]WANG Li-hai, YANG Hui-min. Application of wavelet packet analysis and BP ANN in diagnosing the hole defects in Acer mono wood using ultrasonic quantitative testing[J]. Journal of Beijing Forestry University, 2007, 29(2): 128-132.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views (3845) PDF downloads (34) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return