Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wei Xiwen, Sun Liping, Xu Shuzheng, Yang Yang, Du Chunxiao. Quantitative detection of log defects based on stress wave propagation velocity model[J]. Journal of Beijing Forestry University, 2020, 42(5): 143-154. DOI: 10.12171/j.1000-1522.20190420
Citation: Wei Xiwen, Sun Liping, Xu Shuzheng, Yang Yang, Du Chunxiao. Quantitative detection of log defects based on stress wave propagation velocity model[J]. Journal of Beijing Forestry University, 2020, 42(5): 143-154. DOI: 10.12171/j.1000-1522.20190420

Quantitative detection of log defects based on stress wave propagation velocity model

More Information
  • Received Date: November 03, 2019
  • Revised Date: December 01, 2019
  • Available Online: May 03, 2020
  • Published Date: June 30, 2020
  • ObjectiveThis paper aims to study the variation of stress wave propagation velocity in the longitudinal section of trees at different angles, and to establish the corresponding propagation velocity model, so as to further understand the propagation law of stress wave in the longitudinal section of trees at different angles, and to provide theoretical and experimental basis for the two-dimensional imaging technology of internal defects of logs.
    MethodFirstly, through theoretical analysis, the propagation velocity model of stress wave in longitudinal section of logs with different directions was established. Then, four representative tree species in the northeastern region of China were taken as test samples, and the propagation velocity of stress wave in longitudinal section of logs with different directions, angles of different sections and angles of different directions was measured by stress wave wood nondestructive testing instrument. The relationship of healthy samples between stress wave propagation velocity v(α) and direction angle α, propagation velocity v(β) and longitudinal section angle β, v(α,β) and α, β were obtained, respectively by regression analysis.
    ResultIn the same longitudinal section, the propagation velocity of stress wave increased with the increase of direction angle, and the velocity of the horizontal direction was the smallest. At the same direction angle, the propagation velocity of the stress wave increased with the increase of longitudinal section angle, and the propagation velocity of radial direction was the greatest. The fitting results of the health sample test data were in good agreement with the theoretical mathematical model. The determination coefficient R2 was all greater than 0.87, and the significance P was less than 0.01. The models had higher goodness of fit. For the larch log samples, the cavity defects with diameters of 7.5 cm were designed artificially, and the two-dimensional imaging was performed using the healthy multiple regression model v(α,β)=109.2α2182.1β2+ 36.78α2β234.76α2β4+1627 with correlation coefficient R2 of 0.97 and root mean square error RMSE of 17.81. When the propagation path of stress wave was located in the healthy area of the wood, the variation trend of the propagation velocity with the direction angle and longitudinal section angle fitted the model; but when the stress wave passed through the defective area of the wood, the propagation velocity was significantly reduced, no longer in normal condition. Based on the results of two-dimensional imaging, the fitness of the images was 92.06%, and the error rate of measuring defect cavities was 8.63%.
    ConclusionThe analysis showes that the regression model of stress wave propagation in different longitudinal sections of healthy logs is in good agreement with the theoretical model proposed in this paper, and further verifies that the velocity model has a good guiding role in the detection of internal defects of healthy logs.
  • [1]
    杨学春, 王立海. 应力波技术在木材性质检测中的研究进展[J]. 森林工程, 2002, 18(6):11−12. doi: 10.3969/j.issn.1001-005X.2002.06.006

    Yang X C, Wang L H. Research progresses of testing wood properties using stress wave[J]. Forest Engineering, 2002, 18(6): 11−12. doi: 10.3969/j.issn.1001-005X.2002.06.006
    [2]
    王欣, 申世杰. 木材无损检测研究概况与发展趋势[J]. 北京林业大学学报, 2009, 31(1):202−205.

    Wang X, Shen S J. Advances in non-destructive testing for lumber[J]. Journal of Beijing Forestry University, 2009, 31(1): 202−205.
    [3]
    焦治, 李光辉, 武夕. 基于速度误差校正的林木应力波无损检测断层成像算法[J]. 北京林业大学学报, 2018, 40(1):108−119.

    Jiao Z, Li G H, Wu X. Tomography imaging algorithm based on velocity error correction for stress wave nondestructive evaluation of wood[J]. Journal of Beijing Forestry University, 2018, 40(1): 108−119.
    [4]
    张厚江, 王喜平, 苏娟, 等. 应力波在美国红松立木中传播机理的试验研究[J]. 北京林业大学学报, 2010, 32(2):145−148.

    Zhang H J, Wang X P, Su J, et al. Investigation of stress wave propagation mechanism in American red pine tree[J]. Journal of Beijing Forestry University, 2010, 32(2): 145−148.
    [5]
    安源. 基于应力波的木材缺陷二维成像技术研究[D]. 北京: 中国林业科学研究院, 2013.

    An Y. Two-dimensional imaging technique of wood defects based on stress wave[D]. Beijing: Chinese Academy of Forestry, 2013.
    [6]
    Du X, Li S, Li G, et al. Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation[J]. BioResources, 2015, 10(3): 3948−3962.
    [7]
    Li G, Weng X, Du X, et al. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis[J]. Computers and Electronics in Agriculture, 2016, 124: 23−28. doi: 10.1016/j.compag.2016.03.021
    [8]
    杨学春, 王立海. 应力波在原木中传播理论的研究[J]. 林业科学, 2005, 41(5):132−138. doi: 10.3321/j.issn:1001-7488.2005.05.024

    Yang X C, Wang L H. Study on the propagation theories of stress wave in log[J]. Scientia Silvae Sinicae, 2005, 41(5): 132−138. doi: 10.3321/j.issn:1001-7488.2005.05.024
    [9]
    徐华东, 王立海, 游祥飞, 等. 应力波在旱柳立木内的传播规律分析及其安全评价[J]. 林业科学, 2010, 46(8):145−150.

    Xu H D, Wang L H, You X F, et al. Analysis of stress wave propagation in Hankow willow standing trees and stability assessment[J]. Scientia Silvae Sinicae, 2010, 46(8): 145−150.
    [10]
    翁翔, 李光辉, 冯海林, 等. 应力波在树木径切面内的传播速度模型[J]. 林业科学, 2016, 52(7):104−112.

    Weng X, Li G H, Feng H L, et al. Stress wave propagation velocity model in RL plane of standing trees[J]. Scientia Silvae Sinicae, 2016, 52(7): 104−112.
    [11]
    Li G H, Wang X P, Feng H L, et al. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection[J]. Computers and Electronics in Agriculture, 2014, 104: 32−39. doi: 10.1016/j.compag.2014.03.008
    [12]
    Mascia N T, Nicolas E A, Cammpinas S, et al. Comparison between tsai-wu failure criterion and hankinson’s formula for tension in wood[J]. Wood Research, 2011, 56(4): 499−510.
    [13]
    Dikrallah A, Hakam A, Brancheriau L, et al. Experimental analysis of acoustic anisotropy of wood by using guided waves[C]//Proceedings of International Conference on Integrated Approach to Wood Structure, Behaviour and Application, Joint Meeting of ESWM and COST Action E35. Florence: Aalborg Universitet, 2006: 149−154.
    [14]
    岳小泉, 王立海, 王兴龙, 等. 空洞缺陷形状对杉木圆盘电阻与应力波断层成像效果的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(5):131−137.

    Yue X Q, Wang L H, Wang X L, et al. Effects of artificial cavity defects on electric resistance tomography and stress wave technology of Cunninghamia lanceolata discs[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 131−137.
    [15]
    Liu W, Xie W, Dang Y, et al. Image reconstruction modeling, simulation and experimental study on wood fibrous paper[J/OL]. Journal of Natural Fibers, 2019: 1−14 [2019−11−01]. https://doi.org/10.1080/15440478.2019.1585309.
    [16]
    冯海林, 李光辉, 方益明, 等. 应力波传播模型及其在木材检测中的应用[J]. 系统仿真学报, 2010, 22(6):1490−1493.

    Feng H L, Li G H, Fang Y M, et al. Stress wave propagation modeling and application in wood testing[J]. Journal of System Simulation, 2010, 22(6): 1490−1493.
    [17]
    Du X, Li J, Feng H, et al. Image reconstruction of internal defects in wood based on segmented propagation rays of stress waves[J]. Applied Sciences, 2018, 8(10): 1−18. doi: 10.3390/app8101778
    [18]
    岳小泉, 王立海, 王兴龙, 等. 电阻断层成像、应力波及阻抗仪3种无损检测方法对活立木腐朽程度的定量检测[J]. 林业科学, 2017, 53(3):138−146. doi: 10.11707/j.1001-7488.20170315

    Yue X Q, Wang L H, Wang X L, et al. Quantitative detection of internal decay degree for standing trees based on three NDT methods: electric resistance tomography, stress wave imaging and resistograph techniques[J]. Scientia Silvae Sinicae, 2017, 53(3): 138−146. doi: 10.11707/j.1001-7488.20170315
    [19]
    Stroble J R A, De Carvalho M A G, Gonçalves R, et al. Quantitative image analysis of acoustic tomography in woods[J]. European Journal of Wood and Wood Products, 2018, 76(5): 1379−1389. doi: 10.1007/s00107-018-1323-y
    [20]
    Feng H, Li G, Fu S, et al. Tomographic image reconstruction using an interpolation method for tree decay detection[J]. BioResources, 2014, 9(2): 3248−3263.
  • Related Articles

    [1]FAN Zi-luan, ZHANG Yan-dong, ZHANG Hua, WANG Zhen-yu, BAO Yi-hong. Antioxidant and antibacterial activity of essential oil from Pinus koraiensis needles[J]. Journal of Beijing Forestry University, 2017, 39(8): 98-103. DOI: 10.13332/j.1000-1522.20160265
    [2]WENG Yue-tai, XUE Yu, XU Shuo, ZHANG Guo-liang, LIU Yue, DI Xue-ying. Extraction of total flavonoids from Cronartium orientale aeciospores by response surface methodology and its antioxidant activity in vitro[J]. Journal of Beijing Forestry University, 2017, 39(3): 38-47. DOI: 10.13332/j.1000-1522.20160269
    [3]ZHAO Qing, Lu Xiao-fei, ZHU Xiao-ran, ZHANG Na, GUO Qing-qi. Optimization of extraction technology for lilac polyphenols and their antioxidant activity.[J]. Journal of Beijing Forestry University, 2015, 37(10): 125-129. DOI: 10.13332/j.1000-1522.20140174
    [4]GUO Qing-qi, ZHANG Na, LIU Yi-bing, WANG Zhen-yu. Microwave and ultrasonic effects on the extraction and antioxidation of larch bark polyphenols.[J]. Journal of Beijing Forestry University, 2015, 37(1): 134-138. DOI: 10.13332/j.cnki.jbfu.2015.01.018
    [5]GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and growing slope aspect.[J]. Journal of Beijing Forestry University, 2014, 36(1): 62-65.
    [6]ZHOU Xing-zi, WANG Zi-na, ZENG Hong-sheng, XIA Er-dong, CHEN Lin, REN Di-feng, LU Jun. Preparation process and antioxidant activity of walnut fermented drinks.[J]. Journal of Beijing Forestry University, 2013, 35(5): 139-143.
    [7]GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and altitude[J]. Journal of Beijing Forestry University, 2013, 35(1): 59-63.
    [8]CHEN Jian, SUN Ai-dong, GAO Xue-juan, TAO Xiao-yun, WANG Shan-shan. .Extraction and antioxidation of anthocyanins from blueberry.[J]. Journal of Beijing Forestry University, 2011, 33(2): 126-129.
    [9]JIN Ying, SUN Ai-dong, HU Xiao-dan, WANG Xiao-nan. Ultrasonic extraction and antioxidant activities of apple polyphenols[J]. Journal of Beijing Forestry University, 2007, 29(5): 137-141. DOI: 10.13332/j.1000-1522.2007.05.025
    [10]WANG Rui-gang, CHEN Shao-liang, LIU Li-yuan, HAO Zhi-yong, WENG Hai-jiao, LI He, YANG Shuang, DUAN Shan. Genotypic differences in antioxidative ability and salt tolerance of three poplars under sact stress[J]. Journal of Beijing Forestry University, 2005, 27(3): 46-52.
  • Cited by

    Periodical cited type(8)

    1. 兰宇铭. 基于CiteSpace的国内红松研究趋势与热点分析. 辽宁林业科技. 2022(01): 33-39 .
    2. 都津铭,张萍,高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性. 现代食品科技. 2021(10): 87-95 .
    3. 李晓娇,李悦,董锦,张化艳,宋志姣. 云南松针精油的提取及抗氧化活性研究. 中国食品添加剂. 2020(07): 27-35 .
    4. 龚婷,张敏,王海珠,宗学凤,廖林正. 大叶茜草精油挥发性物质抑菌及抗氧化活性研究. 西南师范大学学报(自然科学版). 2019(06): 54-59 .
    5. 岳鑫,包怡红. 基于荧光及紫外光谱法对红松种鳞多酚与乳清蛋白相互作用的研究. 现代食品科技. 2019(07): 114-120 .
    6. 郭奇泳,张艳,石茂军,张琪瑶,吴聪,赵玉红. 烘焙对红松种籽衣活性成分含量及抗氧化活性的影响. 现代食品科技. 2018(12): 159-166+158 .
    7. 樊梓鸾,张艳东,张华,王振宇,包怡红. 红松松针精油抗氧化和抑菌活性研究. 北京林业大学学报. 2017(08): 98-103 . 本站查看
    8. 樊梓鸾,陈凯莉,高芯,包怡红. 五种松针多酚的提取优化及抗氧化活性研究. 现代食品科技. 2017(08): 211-220 .

    Other cited types(3)

Catalog

    Article views (2006) PDF downloads (50) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return