• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LI Chao, SU Yao-wen, TU Wen-jun, ZHANG Yi-zhuo.. User-oriented visual psychological sorting method for wood plate.[J]. Journal of Beijing Forestry University, 2016, 38(7): 112-119. DOI: 10.13332/j.1000-1522.20150315
Citation: LI Chao, SU Yao-wen, TU Wen-jun, ZHANG Yi-zhuo.. User-oriented visual psychological sorting method for wood plate.[J]. Journal of Beijing Forestry University, 2016, 38(7): 112-119. DOI: 10.13332/j.1000-1522.20150315

User-oriented visual psychological sorting method for wood plate.

More Information
  • Received Date: August 26, 2015
  • Published Date: July 29, 2016
  • Wood appearance affects consumers’ preference of products, and determines the price of products and sales to a certain extent. Colors and texture on the wood board are random and diverse, so using statistical methods to classify them has limitations. According to the characteristics of board surface, we propose a board classification method based on user’s visual characteristics of. This method converts user’s visual preferences into a quantitative analysis of the color and texture, then optimizes samples through mining features demonstrated by the sample data and status information, and finally designs a compression perception classifier for information integration and wood classification. For colors, Tamura texture features and the basic statistical features were used as feature vector, which include six parameters corresponding to six kinds of psychology properties. These features can fuse user’s visual psychology with the basic statistics, and give a more accurate and complete expression of visual features on the board surface. What’s more, the genetic algorithm was implemented to optimize training sample by its nonlinear mapping. For classifier design, compressed sensing was employed as classifier, an over-complete dictionary was built by L*a*b* color feature, Tamura feature and the basic statistical characteristics, and the classification result was obtained by solving the minimum of l1 norm to find out the characteristic data of the test sample and the class vector in the over complete dictionary. Experiments show that the accuracy is 90.56% and the sorting method is practical.
  • [1]
    常湛源, 曹军, 张怡卓. 板材心理感知颜色在线模糊分类器设计[J]. 电机与控制学报, 2014, 18(9):93-98.
    [1]
    CHANG Z Y, CAO J, ZHANG Y Z. Design of on-line timber plate fuzzy classification fused with psychological perceptions of color[J]. Electric Machines and Control, 2014, 18(9):93-98.
    [2]
    白雪冰, 王克奇, 王辉. 基于灰度共生矩阵的木材纹理分类方法的研究[J]. 哈尔滨工业大学学报, 2005, 37(12):1667-1670.
    [2]
    BAI X B, WANG K Q, WANG H. Research on the classification of wood texture based on gray level cooccurrence matrix[J]. Journal of Harbin Institute of Technology, 2005, 37(12):1667-1670.
    [3]
    WANG K Q, WANG Y Q, BAI X B, et al. Acquisition of color feature parameters of wood image identification[J]. Journal of Northeast Forestry University, 2006, 34(3): 104-105.
    [3]
    王克奇, 王业琴, 白雪冰, 等. 板材图像识别中颜色特征参数的提取[J]. 东北林业大学学报, 2006, 34(3): 104-105.
    [4]
    杨少春, 王克奇, 戴天虹, 等. 基于直方图的木材表面颜色分类研究[J]. 森林工程, 2008, 24(1): 34-36.
    [4]
    YANG S C, WANG K Q, DAI T H, et al. A study of color classification on wood surface based on histogram[J]. Forest Engineering, 2008, 24(1): 34-36.
    [5]
    WANG K Q, YANG S C, DAI T H, et al. Research on wood classification using uniform color space[J].Computer Engineering and Design, 2008, 29(7): 1780-1784.
    [5]
    SCHMITT E, MAZAUD C, BOMBARDIER V, et al. A fuzzy reasoning classification method for pattern recognition[J]. IEEE International Conference on Fuzzy Systems, 2006, 24(2):1078-1085.
    [6]
    王克奇, 杨少春, 戴天虹, 等. 基于均匀颜色空间的木材分类研究[J]. 计算机工程与设计, 2008, 29(7): 1780-1784.
    [6]
    YIN S C. Wood science[M]. Beijing: China Forestry Publishing House, 1996: 33-34.
    [7]
    尹思慈. 木材学[M]. 北京:中国林业出版社, 1996: 33-34.
    [7]
    ZHANG Y Z, MA L, XU L,et al. Wood board texture classification based on genetic fusion of wavelet and curvelet features[J]. Journal of Beijing Forestry University, 2014,36(2):119-124.
    [8]
    张怡卓, 马琳, 许雷, 等. 基于小波与曲波遗传融合的木材纹理分类[J]. 北京林业大学学报, 2014, 36(2): 119-124.
    [8]
    WANG K Q, BAI X B, WANG H. Classification of wood surface texture based on wavelets transform[J]. Journal of Harbin Institute of Technology, 2009,41(9):232-234.
    [9]
    REN N,YU H P,LIU Y X,et al. Fractal character and calculation of wood texture[J]. Journal of Northeast Forestry University,2007, 35(2): 9-11.
    [9]
    王克奇, 白雪冰, 王辉. 基于小波变换的木材表面纹理分类[J]. 哈尔滨工业大学学报, 2009,41(9):232-234.
    [10]
    LIU Z H, WANG H J. Wood identification based on feature fusion of PCA and fishertrees[J]. Scientia Silvae Sinicae, 2013, 49(6):122-128.
    [10]
    任宁, 于海鹏, 刘一星, 等. 木材纹理的分形特征与计算[J]. 东北林业大学学报, 2007, 35(2): 9-11.
    [11]
    XIAO S P,CHEN Y D,YANG J X. Color texture recognition based on wavelet transform and support vector machine[J]. Microelectronics and Computer, 2010,27(7):117-120.
    [11]
    AVCI E, SENGUR A, HANBAY D. An optimum feature extraction method for texture classification[J]. Expert Systems with Applications, 2009, 36(3): 6036-6043.
    [12]
    JING J, ZHANG H, WANG J, et al. Fabric defect detection using Gabor filters and defect classification based on LBP and Tamura method[J]. Journal of the Textile Institute, 2013, 104(1): 18-27.
    [12]
    CHEN L J,WANG K Q,WANG H, et al. The confirmation of wavelet base and decomposition progression in wood texture analysis[J]. Forestry Machinery Woodworking Equipment, 2007, 35(5):25-27.
    [13]
    刘子豪, 汪杭军. 基于PCA+FisherTrees特征融合的木材识别[J]. 林业科学, 2013, 49(6):122-128.
    [14]
    肖淑苹, 陈一栋, 杨建雄. 基于小波变换和支持向量机的彩色纹理识别[J]. 微电子学与计算机,2010,27(7):117-120.
    [15]
    陈立君, 王克奇, 王辉, 等. 木材纹理分析中小波基的选择和分解级数的确定[J]. 林业机械与木工设备, 2007, 35(5):25-27.
  • Cited by

    Periodical cited type(5)

    1. 乔志宏,侯宏宇,高梅香,卢廷玉. 短时暴雨对小兴安岭凉水阔叶红松林地表甲虫群落的影响. 生态学报. 2020(14): 4994-5007 .
    2. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷对火力楠凋落叶分解的影响. 华南农业大学学报. 2018(01): 98-104 .
    3. 李旭华,孙建新. Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析. 植物生态学报. 2018(12): 1131-1144 .
    4. 毛宏蕊,金光泽. 氮添加对典型阔叶红松林净初级生产力的影响. 北京林业大学学报. 2017(08): 42-49 . 本站查看
    5. 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响. 南京林业大学学报(自然科学版). 2017(05): 7-12 .

    Other cited types(9)

Catalog

    Article views (1710) PDF downloads (29) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return