• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
YUAN Hu-wei, LIANG Sheng-fa, FU Xue-jun, NIU Shi-hui, LI Wei, LI Yue. Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province[J]. Journal of Beijing Forestry University, 2016, 38(3): 47-54. DOI: 10.13332/j.1000-1522.20150370
Citation: YUAN Hu-wei, LIANG Sheng-fa, FU Xue-jun, NIU Shi-hui, LI Wei, LI Yue. Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province[J]. Journal of Beijing Forestry University, 2016, 38(3): 47-54. DOI: 10.13332/j.1000-1522.20150370

Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province

More Information
  • Received Date: October 25, 2015
  • Published Date: March 30, 2016
  • Seed orchard of Chinese pine in Shanxi Province is in the critical period from first-generation to advanced-generation. In this paper, issues related to the establishment of second-generation seed orchard, including elite family selection, within-family superior individual selection, phylogenetic analysis with SSR (simple sequence repeat) markers, genetic diversity analysis with SSR markers and field design, were investigated in the plus-tree open-pollinated progeny test of the first-generation seed orchard of Chinese pine in Shangzhuang, Shanxi Province, China. Results showed that there were significant differences in volume growth among the 77 investigated families and 20 families were selected as the elite families. One superior individual was selected in each of the 20 elite families and a total of 20 superior individuals were selected in the open-pollinated progeny test, with the mean volume dominance ratio and mean volume genetic gain of 0.25 and 0.13. There were varying genetic relationships among the 20 open-pollinated superior individuals. Individual No. 3 was distantly related with the other 19 individuals, however, individual No. 15 and No. 17 were closely related. Genetic diversity results revealed that there were relatively high genetic diversity levels among the 20 superior individuals, with the mean polymorphism information content (PIC) of 0.532 4. The 20 superior individuals were in a relatively stable state, with the mean heretability (H), expected heretability (He) and fixation index of 0.595 5, 0.570 3 and -0.018 4, respectively. Unbalanced, incomplete fixed block design was advised in the second-generation seed orchard of Chinese pine in Shangzhuang. The relative phylogenetic relationships among clones were considered and the best clones were represented with higher proportion, which had effectively increased the genetic gain. This study will lay an important theoretical foundation for the establishment of the second-generation seed orchard of Chinese pine in Shanxi province and provide important references for the application of molecular marker technology into the improvement of Chinese pine.
  • [1]
    WANG S S, SHEN X H, YAO L H, et al. A comparative study on growth patterns of Pinus tabulaeformis clones in Xingcheng seed orchard, Liaoning Province [J]. Journal of Beijing Forestry College, 1985, 7(4): 72-83.
    [1]
    CHEN K M, ABBOTT R J, MILNE R I, et al. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China [J]. Molecular Ecology, 2008, 17(19): 4276-4288.
    [2]
    CHEN B W, ZHENG Y, SHEN X H. Studies on selection methods and criteria of plus trees in Pinus tabulaeformis Carr. [J]. Journal of Beijing Forestry University, 1992, 14(1): 7-13.
    [2]
    YUAN H W, LI Z X, FANG P, et al. Variation and stability in female strobili production of a first-generation clonal Seed orchard of Chinese pine (Pinus tabuliformis) [J]. Silvae Genetica, 2014, 63(1-2): 41-47.
    [3]
    王沙生, 沈熙环, 姚丽华, 等. 兴城油松种子园无性系生长比较研究 [J]. 北京林学院学报, 1985, 7(4): 72-83.
    [3]
    ZHANG D M, YANG Y, SHEN X H, et al. Selection of primers and establishment of SSR-PCR reaction system on Pinus tabuliformi Carr.[J]. Journal of Beijing Forestry University, 2007, 29(2): 13-17.
    [4]
    陈伯望, 郑云, 沈熙环. 油松优树选择方法的研究 [J]. 北京林业大学学报, 1992, 14(1): 7-13.
    [5]
    GRIFFIN A R, LINDGREN D. Effect of inbreeding on production of filled seed in Pinus radiata-experimental results and a model of gene action [J]. Theoretical and Applied Genetics, 1985, 71(2): 334-343.
    [6]
    DEVEY M E, BELL J C, UREN T L, et al. A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata [J]. Genome, 2002, 45: 984-989.
    [7]
    PENA S D J, CHAKRABORTY R. Paternity testing in the DNA era [J]. Trends in Genetics, 1994, 10(6): 204-209.
    [8]
    LUIKART G, ENGLAND P R. Statistical analysis of microsatellite DNA data [J]. Trends in Ecology and Evolution, 1999, 14(7): 253-256.
    [9]
    NIELSEN R, MATTILA D, CLAPHAM P J, et al. Statistical approaches to paternity analysis in natural populations and applications to the Northern Atlantic humpback whale [J]. Genetics, 2001, 157(4): 1673-1682.
    [10]
    JONES A G, AREREN W R. Methods of parentage analysis in natural populations [J]. Molecular Ecology, 2003, 12(10): 2511-2523.
    [11]
    GRATTAPAGLIA D, RIBEIRO V J, REZENDE G D S P. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus[J]. Theoretical and Applied Genetics, 2004, 109(1): 192-199.
    [12]
    EL-KASSABY Y A, LSTIBUREK M. Breeding without breeding [J]. Genetics Research, 2009, 91(2): 111-120.
    [13]
    EL-KASSABY Y A, KLAPSTE J, GUY R D. Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP) [J]. New Forests, 2012, 43(5-6): 631-637.
    [14]
    WANG X R, TORIMARU T, LINDGREN D, et al. Marker-based parentage analysis facilitates low input ‘breeding without breeding’ strategies for forest trees [J]. Tree Genetics Genomes, 2009, 6(2): 227-235.
    [15]
    ZHAO P, ZHANG S X, WOESTE K. Genotypic data changes family rank for growth and quality traits in a black walnut (Juglans nigra L.) progeny test [J]. New Forests, 2013, 44: 357-368.
    [16]
    MASSAH N, WANG J L, RUSSELL J H, et al. Genealogical relationship among members of selection and production populations of yellow cedar (Callitropsis nootkatensis [D. Don] Oerst.) in the absence of parental information [J]. Journal of Heredity, 2010, 101(2): 154-163.
    [17]
    WANG J L, EL-KASSABY Y A, RITLAND K. Estimating selfing rates from reconstructed pedigrees using multilocus genotype data [J]. Molecular Ecology, 2012, 21(1): 100-116.
    [18]
    KLÁPŠT J, LSTIBUREK M, EL-KASSABY Y A. Estimates of genetic parameters and breeding values from western larch open-pollinated families using marker- based relationship [J]. Tree Genetics Genomes, 2014, 10(2): 241-249.
    [19]
    SHIMONO A, WANG X R, TORIMARU T, et al. Spatial variation in local pollen flow and mating success in a Picea abies clone archive and their implications for a novel “breeding without breeding” strategy [J]. Tree Genetics Genomes, 2011, 7(3): 499-509.
    [20]
    POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.
    [21]
    张冬梅, 杨娅, 沈熙环, 等. 油松SSR-PCR引物筛选及反应体系的建立 [J]. 北京林业大学学报, 2007, 29(2): 13-17.
    [22]
    FANG P, NIU S H, YUAN H W, et al. Development and characterization of 25 EST-SSR markers in Pinus sylvestris var. mongolica (Pinaceae) [J/OL]. Applications in Plant Sciences, 2014, 2(1): apps.1300057[2015-09-28]. http:∥doi.org/10.3732/apps.1300057.
    [23]
    BECHER W A. Manual of quantitative genetics [M]. 4th ed. Ann Arbor: Academic Enterprises, 1985.
    [24]
    KANG K S, LINDGREN D. Fertility variation among clones of Korean pine (Pinus koraiensis S. et Z.) and its implications on seed orchard management [J]. Forest Genetics, 1999, 6(3): 191-200.
    [25]
    HODGE G R, WHITE T L. Advanced-generation wind-pollinated seed orchard design [J]. New Forests, 1993, 7(3): 213-236.
  • Cited by

    Periodical cited type(21)

    1. 张胜利,代金玲,卢秀琴. 基于CiteSpace的林木种子园研究进展. 安徽农学通报. 2025(01): 73-80 .
    2. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
    3. 周文戈,孙越,张杰,文浩雨,李慧玉,高彩球,王超,张庆祝,姜静,刘桂丰. 应用混合线性模型对白桦家系速生性及稳定性分析与选择. 东北林业大学学报. 2024(09): 1-7 .
    4. 陈伟,孙晓梅,董雷鸣,李江,付强. 思茅松半同胞和全同胞子代测定林生长性状遗传分析与选择. 中南林业科技大学学报. 2023(11): 163-172 .
    5. 李博,马文君,王姣姣,王忠明. 基于文献计量的中国林草科学研究现状及热点分析. 林草政策研究. 2023(04): 27-35 .
    6. 郑璐,丁士富,王世忠,樊春志,张文臣,郑永涛. 油松二代种子园无性系评价. 林业科技通讯. 2022(03): 52-56 .
    7. 代剑峰,党磊,金雨晴,周先清,贾海宽,张鸿景. 基于EST-SSR标记的油松种子园遗传多样性分析. 河北农业大学学报. 2021(02): 72-78 .
    8. 齐建东,买晶晶,刘春霞,李伟. 无性系种子园最小近交配置研究. 农业机械学报. 2020(03): 241-248 .
    9. 郑璐. 我国油松高世代种子园发展概述. 林业科技通讯. 2020(05): 19-21 .
    10. 贺快快,武文斌,张子杰,胡现铬,韩方旭,钮世辉,李悦. 北京油松人工林遗传结构变异及与山西山系种群差异分析. 北京林业大学学报. 2020(06): 33-42 . 本站查看
    11. 陈雅丽,赵祜,吕东,李伟,张宏斌. 青海云杉育种资源遗传评价. 甘肃农业大学学报. 2020(05): 136-142+151 .
    12. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 .
    13. 王章荣. 国外种子园研究热点及对我国营建高世代种子园的启示. 南京林业大学学报(自然科学版). 2019(01): 161-166 .
    14. 张静萍. 高世代种子园营建技术问题分析. 科技创新导报. 2019(19): 186+188 .
    15. 欧阳芳群,祁生秀,范国霞,蔡启山,陈海庆,高万里,胡长寿,王军辉. 青海云杉自由授粉家系遗传变异与基于BLUP的改良代亲本选择. 南京林业大学学报(自然科学版). 2019(06): 53-59 .
    16. 王路漫,王建新. 基于改进布谷鸟搜索算法的种子园空间布局优化. 大连理工大学学报. 2018(03): 309-315 .
    17. 王晴,齐建东,崔晓晖,李伟. 改进型遗传算法在种子园无性系配置设计中的应用. 林业科学. 2018(04): 30-37 .
    18. 齐建东,刘春霞,崔晓晖,李伟. 基于改进型果蝇算法的无性系种子园设计. 农业机械学报. 2018(11): 195-200 .
    19. 张砚辉,冯健,张素清,曹世刚. 树体管理对长白落叶松种子园母树生长及结实性状的影响. 北方园艺. 2017(06): 60-64 .
    20. 袁虎威,王晓飞,杜清平,钮世辉,李悦,李伟. 基于BWB的油松初级种子园混合子代优树选择与配置设计. 北京林业大学学报. 2017(11): 28-34 . 本站查看
    21. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看

    Other cited types(16)

Catalog

    Article views (1966) PDF downloads (30) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return