• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
Citation: SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016

Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.

More Information
  • Received Date: January 17, 2016
  • Published Date: December 30, 2016
  • A long-term thinning experiment in Korean larch (Larix olgensis) plantation of Mengjiagang Forest Farm of Kiamusze in hilly area of Sanjiang Plain, northeastern China, was conducted to identify the effects of thinning on biomass carbon (dead and live biomass), soil carbon (forest floor and mineral soil), total ecosystem carbon storage and accumulative carbon sequestration (dead tree +thinned tree+ ecosystem carbon storage). Two harvesting scenarios (stem-only vs. whole-tree harvesting) were assessed in terms of carbon export. The study site was a 56-year-old larch plantation, where five thinnings of different intensities and frequencies were applied: 2 times heavy (35.6%-43.4%) thinning (L1), 2 times moderate (23.1%-24.3%) thinning (L2), 3 times moderate (15.3%-23.8%) thinning (L3), 4 times light (5.8%-17.1%) thinning (L4) and unthinned (CK, only harvesting dead biomass). The five thinning interventions involved whole-tree harvesting of thinned and dead trees (entire removal of slash and stem). The results revealed difference between the unthinned and thinned plots as regards the total dead wood debris, the former containing 40.3 t/ha, in the case of thinned plots, 8.3 t/ha (range 3.1-14.1). The energy wood (logging residues) and timber production by thinning were 10.4 t/ha (range 6.9-13.8) and 32.8 m3/ha(rang 21.9-50.1), respectively. Although the forest floor carbon pool was susceptible to loss (14.8% lower than CK), the mineral soil carbon pool could be enhanced by thinning (5.6% higher than CK), particularly in L3 plot (15.5% higher than CK). Thinning could not change the allometric relationships of living tree biomass carbon pool (proportions of wood-stem, root, branch, bark and foliage to the retained living tree biomass carbon pool were 67.7%-68.7%, 17.5%-18.0%, 6.8%-7.0%, 4.8%-4.9% and 2.2%-2.3%, respectively) and total ecosystem carbon pool (proportions of retained living trees, 0-30 cm mineral soil, forest floor, dead standing tree, shrub layer and herb layer to the total ecosystem carbon storage were 69.7%-72.0%, 24.7%-27.7%, 1.5%-2.2%, 0-1.3%, 0.1%-1.3% and 0.1%-0.2%, respectively), but increase the proportion of belowground carbon (roots of live and standing dead trees+0-30cm mineral soil+forest floor+shrub+herb) to the total ecosystem carbon storage (40.5%-42.4%, 40.0% for CK), and decrease the proportion of aboveground carbon (stem+branch+bark; 56.0%-57.9%, 58.3% for CK). Stem-only harvesting of old growth plantation could leave 26.5%-27.4% of living biomass carbon (27.7% for CK), whole-tree harvesting could leave19.7%-20.3% of living biomass carbon (20.5% for CK), and 42.1%-44.0% of ecosystem carbon (41.7% for CK). The averaged values of retained tree biomass, ecosystem carbon storage and stand accumulative carbon sequestration of thinned old growth larch plantations (56-year-old) were of similar levels with CK, and only 1.7% (-4.3%-1.5%), 1.7%(-5.9%-1.4%) and 1.1%(-4.0%-0.8%) lower than CK, respectively, but in the L3 and L4 plots, particularly in the L4 plot, the above indexes were 1.5%, 1.4%, and 0.8% higher than CK, respectively. Our results indicated that 3 and 4 times light or moderate (5.8%-23.8%) thinning not only supplies energy wood and timber production, but also does not alter the retained tree biomass, total ecosystem carbon content and stand accumulative carbon sequestration of old growth larch plantation, suggesting the sustainability of these silvicultural treatments.
  • [1]
    DWYER J M, FENSHAM R, BUCKLEY Y M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem[J] . Journal of Applied Ecology, 2010,47(3): 681-691.
    [1]
    LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J] . Acta Ecologica Sinica, 2000,20(5):732-740.
    [2]
    SUN Y J, ZHANG J, HAN A H, et al. Biomass and carbon pool of Larix gmelini young and middle age forest in Xing'an Mountains, Inner Mongolia[J] . Acta Ecologica Sinica,2007, 27(5):1756-1762.
    [2]
    NUNERY J S, KEETON W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J] . Forest Ecology and Management, 2010,259(1): 1363-1375.
    [3]
    POWERS M, KOLKA R, PALIK B, et al. Long-term management impacts on carbon storage in Lake States forests[J] . Forest Ecology and Management, 2011,262(3):424-431.
    [3]
    JU W Z, WANG X J, SUN Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J] . Acta Ecologica Sinica, 2011, 31(4):1139-1148.
    [4]
    CLARKE N, GUNDERSEN P, JNSSON-BELYAZID U, et al. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems[J] . Forest Ecology and Management, 2015,351 (1):9-19.
    [4]
    YIN M F, ZHAO L, CHEN X F, et al. Carbon storage maturity age of Larix olgenisis and L. kaempferi[J] . Chinese Journal of Applied Ecology, 2008,19(12): 2567-2571.
    [5]
    ALAM A, KILPELAINEN A, KELLOMAKI S. Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems[J] . European Journal of Forest Research, 2012,131(3): 655-667.
    [5]
    JIA Z K, GONG N N, YAO K, et al. Effects of thinning intensity on the growth and biomass of Larix principis-rupprechtii plantation in Saihanba, Hebei Province[J] . Journal of Northeast Forestry University, 2012,40(3):5-7,31.
    [6]
    WANG M, LI F R, JIA W W, et al. Dynamic change of carbon storage for larch plantation in Heilongjiang Province[J] . Bulletin of Botanical Research,2013, 33(5):623-628.
    [6]
    RUIZ-PEINADO R, BRAVO-OVIEDO A, LPEZ-SENESPLEDA E, et al. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods [J] . European Journal of Forest Research, 2013,132(2):253-262.
    [7]
    VARGAS R, ALLEN E B, ALLEN M F. Effects of vegetation thinning on above-and belowground carbon in a seasonally dry tropical forest in Mexico[J] . The Journal of Tropical Biology and Conservation, 2009,41(3):302-311.
    [7]
    SUN Z H, JIN G Z, MU C C. On the long-term productivity maintenance of monoculture Larix olgensis larch timber forest in northeastern China[M] . Beijing: Science Press,2009.
    [8]
    NAVE L E, VANCE E D, SWANSTON C W, et al. Harvest impacts on soil carbon storage in temperate forests[J] . Forest Ecology and Management, 2010,259(1): 857-866.
    [9]
    WANG W F, PENG C H, KNEESHAW D D, et al. Modeling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change[J] . Canadian Journal of Forest Research, 2013,43(5):469-479.
    [10]
    THUMBER C, EASTAUGH C S, HASENAUER H. A thinning routine for large-scale biogeochemical mechanistic ecosystem models[J] . Forest Ecology and Management, 2014,320(1): 56-69.
    [11]
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J] .生态学报,2000,20(5):732-740.
    [12]
    孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J] .生态学报, 2007,27(5):1756-1762.
    [13]
    巨文珍,王新杰,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律[J] .生态学报,2011,31(4):1139-1148.
    [14]
    殷鸣放,赵林,陈晓非,等.长白落叶松与日本落叶松的碳储量成熟龄[J] .应用生态学报,2008,19(12):2567-2571.
    [15]
    贾忠奎,公宁宁,姚凯,等.间伐强度对塞罕坝华北落叶松人工林生长进程和生物量的影响[J] .东北林业大学学报,2012,40(3):5-7,31.
    [16]
    王蒙,李凤日,贾炜炜,等.黑龙江省落叶松人工林碳储量动态研究[J] .植物研究,2013,33(5):623-628.
    [17]
    孙志虎,金光泽,牟长城.长白落叶松人工林长期生产力维持的研究[M] .北京:科学出版社, 2009.
    [18]
    BARITZ R, SEUFERT G, MONTANARELLA L, et al. Carbon concentrations and stocks in forest soils of Europe[J] . Forest Ecology and Management,2010,260(3):262-277.
    [19]
    KURTH V J, D’AMATO A W, PALIK B J, et al. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting[J] . Soil Science Society of America Journal, 2014,8(2): 624-633.
    [20]
    PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J] . Science, 2011,333:988-993.
    [21]
    ESWARAN H, BERG E V D, REICH P. Organic carbon in soils of the world[J] . Soil Science Society of America Journal, 1993,57(1):192-194.
    [22]
    BATJES N H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil[J] . Biology Fertility of Soils, 1998,27(3):230-235.
    [23]
    JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration [J] . Geoderma, 2007,137(3): 253-268.
    [24]
    GRAND S, LAVKULICH L M. Effects of forest harvest on soil carbon and related variables in Canadian spodosols[J] . Soil Science Society of America Journal, 2012,76(5): 1816-1827.
    [25]
    HOOVER C M. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US[J] . Carbon Balance and Management, 2011,6(1):17-24.
    [26]
    GOODALE C L, APPS M J, BIRDSEY R A, et al. Forest carbon sinks in the northern hemisphere[J] . Ecological Applications, 2002, 12(3):891-899.
    [27]
    VESTERDAL L, ELBERLING B, CHRISTIANSEN J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J] . Forest Ecology and Management, 2012,264(1):185-196.
    [28]
    JOHNSON D W, CURTIS P S. Effects of forest management on soil C and N storage: meta analysis[J] . Forest Ecology and Management, 2001,140(1):227-238.
    [29]
    ROIG S, RIO M, CANELLAS I, et al. Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes[J] . Forest Ecology and Management,2005,206(1): 179-190.
    [30]
    BLANCO J A, IMBERT J, CASTILLO F J. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees[J] . Forest Ecology and Management, 2006, 237(1): 342-352.
    [31]
    SLODICAK M, NOVAK J, SKOVSGAARD J P. Wood production, litter fall and humus accumulation in a Czech thinning experiment in Norway spruce (Picea abies (L.) Karst.) [J] . Forest Ecology and Management, 2005,209(1): 157-166.
    [32]
    DINCA L C, SPARCHEZ G H, DINCA M, et al. Organic carbon concentrations and stocks in Romanian mineral forest soils[J] . Annals of Forest Research, 2012,55(2):229-241.
    [33]
    VESTERDAL L, RAULUND-RASMUSSEN K. Forest floor chemistry under seven tree species along a soil fertility gradient[J] . Canadian Journal of Forest Research, 1998, 28(11):1636-1647.
    [34]
    CALLESEN I, LISKI J, RAULUND-RASMUSSEN K, et al. Soil carbon stores in Nordic well-drained forest soils: relationships with climate and texture class[J] . Global Change Biology, 2003,9(3): 358-370.
    [35]
    ZHAO D H, KANE M, TESKEY R, et al. Impact of management on nutrients, carbon, and energy in aboveground biomass components of mid-rotation loblolly pine (Pinus taeda L.) plantations[J] . Annals of Forest Science, 2014,71(8): 843-851.
    [36]
    VESTERDAL L, DALSGAARD M, FELBY C, et al. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands[J] . Forest Ecology and Management, 1995, 77(1):1-10.
    [37]
    JONARD M, MISSON L, PONETTE Q. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes[J] . Canadian Journal of Forest Research, 2006,36(10): 2684-2695.
    [38]
    SKOVSGAARD J P, STUPAK I, VESTERDAL L. Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): a case study on spacing and thinning effects in northern Denmark[J] . Scandinavian Journal of Forest Research, 2006, 21(6): 470-488.
    [39]
    TVEITE B, HANSSEN K H. Whole-tree thinnings in stands of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies):short-and long-term growth results[J] . Forest Ecology and Management, 2013,298(1): 52-61.
    [40]
    DEWAR R, CANNELL M G R. Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples[J] . Tree Physiology, 1992,11(1): 49-71.
    [41]
    THORNLEY J H M, CANNELL M G R. Managing forests for wood yield and carbon storage: a theoretical study[J] . Tree Physiology, 2000,20(7):477-484.
    [42]
    HAWTHORNE S N D, LANE P N J, BREN L J, et al. The long term effects of thinning treatments on vegetation structure and water yield[J] . Forest Ecology and Management, 2013,310(1):983-993.
    [43]
    HERAS J D L, MOYA D, LO'PEZ-SERRANO F R, et al. Carbon sequestration of naturally regenerated Aleppo pine stands in response to early thinning[J] . New Forests, 2013,44: 457-470.
    [44]
    ALFARO-SANCHEZ R,LOPEZ-SERRANO F R, RUBIO E, et al. Response of biomass allocation patterns to thinning in Pinus halepensis differs under dry and semiarid Mediterranean climates[J] . Annals of Forest Science, 2015,72(5): 595-607.
    [45]
    BAGDON B, HUANG C H. Carbon stocks and climate change: management implications in Northern Arizona ponderosa pine forests[J] . Forests, 2014,5(4): 620-642.
    [46]
    MARTIN J L, GOWER S T, PLAUT J, et al. Carbon pools in a boreal mixedwood logging chronosequence[J] . Global Change Biology, 2005,11(11): 1883-1894.
    [47]
    BRADFORD J B, FRAVER S, MILO A M, et al. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks[J] . Forest Ecology and Management, 2012,267(1): 209-214.
    [48]
    WARD C, POTHIER D, PARE D. Do boreal forests need fire disturbance to maintain productivity[J] . Ecosystems, 2014,17(6): 1053-1067.
    [49]
    ALAM A, KELLOMAKI S, KILPELAINEN A, et al. Effects of stump extraction on the carbon sequestration in Norway spruce forest ecosystems under varying thinning regimes with implications for fossil fuel substitution[J] . Global Change Biology Bioenergy, 2013,5(4): 445-458.
    [50]
    POWERS M D, KOLKA R K, BRADFORD J B, et al. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands[J] . Ecological Applications, 2012,22(4): 1297-1307.
    [51]
    PYORALA P, KELLOMKI S, PELTOLA H. Effects of management on biomass production in Norway spruce stands and carbon balance of bioenergy use[J] . Forest Ecology and Management, 2012,275(1): 87-97.
  • Related Articles

    [1]Zhang Yuxing, Wang Xuejun, Pu Ying, Zhang Jianbo. Changes in forest resource carbon storage in China between 1949 and 2018[J]. Journal of Beijing Forestry University, 2021, 43(5): 1-14. DOI: 10.12171/j.1000-1522.20200237
    [2]Zeng Weisheng, Sun Xiangnan, Wang Liuru, Wang Wei, Pu Ying. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1-8. DOI: 10.12171/j.1000-1522.20200058
    [3]NA Meng, LIU Ting-yan, ZHANG Yan-dong, FENG Chen-xin, LIU Dao-kun. Effects of stock density on carbon storage in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20-26. DOI: 10.13332/j.1000-1522.20160111
    [4]MING An-gang, ZHENG Lu, MA Jing, TAO Yi, LAO Qing-xiang, LU Li-hua. Biomass, carbon stock and allocation characteristics in Mesua ferrea plantation[J]. Journal of Beijing Forestry University, 2015, 37(2): 32-39. DOI: 10.13332/j.cnki.jbfu.2015.02.015
    [5]LIU Xian-hao, LU Yuan-hang, MA Lú-yi, XUE Yang 3.. Estimation method of wood carbon storage at sacle of forest farm management unit.[J]. Journal of Beijing Forestry University, 2013, 35(5): 144-148.
    [6]TIAN Shi-yan, ZHANG Yu-qing, WU Bin, ZHENG Hui, LI Chun-ping. Difference analysis in carbon storage of farmland shelterbelts in the plain area of China.[J]. Journal of Beijing Forestry University, 2012, 34(2): 39-44.
    [7]JIA Wei-wei, LI Feng-ri, DONG Li-hu, ZHAO Xin. Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models[J]. Journal of Beijing Forestry University, 2012, 34(1): 6-13.
    [8]SONG Xi-long, BI Jun, LIU Feng, WANG Chao. Biomass and carbon storage of Betula platyphylla natural secondary forests in Mulan Forest Farm,Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2010, 32(6): 33-36.
    [9]FAN Deng-xing, YU Xin-xiao, YUE Yong-jie, NIU Li-li, GAO Zhi-liang, MA Li-ya.. Forest carbon storage and its dynamics in Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 117-120.
    [10]DUAN Wen-xia, ZHU Bo, LIU Rui, CHEN Shi, ZHOU Yu-ping, CHEN Fang. Biomass and soil carbon dynamics in Cryptomeria fortunei plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 55-59.
  • Cited by

    Periodical cited type(35)

    1. 沈汉,郑成忠,张能军,邱勇斌,徐金良,成向荣. 间伐对杉木大径材培育林分的生长和乔木碳储量的影响. 东北林业大学学报. 2025(04): 47-54+60 .
    2. 高彤,宋鑫彧,任允泽,毛亮亮,高然,董希斌. 抚育间伐强度对针阔混交林碳动态变化的影响. 中南林业科技大学学报. 2024(02): 118-128 .
    3. 牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
    4. 赵鹏,刘子玺,李得禄,张俊年,张万科,肖东,杨斌元. 祁连山国家公园典型生态系统固碳功能研究综述. 陕西林业科技. 2024(02): 127-131+134 .
    5. 吴章明,唐思莹,宋思宇,李聪,刘丽鸽,朱鹏,徐红伟,张学强,张健,刘洋. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报. 2024(04): 847-860+878 .
    6. 吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
    7. 邹丰虎,柴宗政. 近自然经营对马尾松人工林生态系统碳储量的影响. 广西科学. 2024(03): 405-415 .
    8. 赵吉平. 不同结构落叶松天然林生物量及生产力特征. 南方农业. 2023(04): 101-104 .
    9. 高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版). 2023(06): 85-94 .
    10. 杜雪,王海燕,邹佳何,孟海,赵晗,崔雪,董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素. 生态环境学报. 2022(04): 663-669 .
    11. 肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
    12. 张乃暄,王韵頔,许中旗,付立华,张菲,程顺. 抚育间伐对塞罕坝地区云杉人工林碳储量及固碳速率的影响. 河北农业大学学报. 2022(06): 81-87 .
    13. 王亚辉,牟长城,杨智慧,刘珽,李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响. 北京林业大学学报. 2021(10): 54-64 . 本站查看
    14. 赵状,董希斌,曲杭峰,宋鑫彧,刘慧,毛亮亮. 可拓评判法在红皮云杉碳质量分数评价中的应用. 东北林业大学学报. 2021(10): 71-76 .
    15. 陈俊华,张鑫,谢天资,龚固堂,王琛,慕长龙. 川中丘陵区人工柏木林不同间伐强度效果评价. 四川林业科技. 2021(06): 11-20 .
    16. 南维波. 不同抚育强度对兴安落叶松人工林的影响. 农村实用技术. 2020(06): 121-122 .
    17. 徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
    18. 龚映匀,王瑞辉,张斌,刘凯利,董凯丽,刘俊涛,赵苏亚,周钰淮. 抚育间伐对川西柳杉人工林生长和土壤有机碳的影响. 林业资源管理. 2020(06): 96-104 .
    19. 宋重升,张利荣,王有良,游云飞,冯随起,林开敏. 抚育间伐对人工林生态系统影响的研究进展. 亚热带农业研究. 2020(04): 279-288 .
    20. 刘泰瑞,任达,董威,覃志杰,张芸香,郭晋平. 华北落叶松天然林目标树间伐释压与胸径生长关系研究. 中南林业科技大学学报. 2019(01): 20-24+44 .
    21. 廖鋆章,贲丽云. 不同间伐措施强度对杉木人工林碳储量及其分配的影响研究. 低碳世界. 2019(04): 308-309 .
    22. 周焘,王传宽,周正虎,孙志虎. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报. 2019(05): 1651-1658 .
    23. Zhenge HUANG,Minyang XIE,Mingbao WEI,Bin HE,Shaozhuang MO,Gang ZHOU,Ji LIANG. Carbon Storage and Distribution of the Mature Pinus massoniana Plantation in Northwest Guangxi. Agricultural Biotechnology. 2019(03): 141-144 .
    24. 管惠文,董希斌,张甜,曲杭峰,王智勇. 抚育间伐后落叶松天然次生林生境恢复效果的评价. 东北林业大学学报. 2019(07): 6-13+24 .
    25. 戎建涛,张晓红,郜爱玲,王艳英,潘凡群. 不同间伐强度经营对柳杉人工林土壤理化性质的影响. 西北林学院学报. 2019(04): 206-211 .
    26. 董莉莉,赵济川,汪成成,刘红民,高英旭,杨鹤. 抚育间伐后蒙古栎阔叶混交林径级结构及生长动态研究. 西南林业大学学报(自然科学). 2019(06): 98-104 .
    27. 董莉莉,刘红民,汪成成,赵济川,高英旭,黄夏,肖尧. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响. 沈阳农业大学学报. 2019(05): 614-620 .
    28. 韦明宝,王朝健,杨正文,黄振格,王汉敢,何斌. 桂西北马尾松人工林生态系统碳贮量与分布. 亚热带农业研究. 2019(03): 152-156 .
    29. 银彬吾,刘奇林,陆滟灵,何斌,黄振格,谢敏洋. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学. 2019(04): 466-471 .
    30. 朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 . 本站查看
    31. 韦家国,周刚,刘凡胜,杨正文,莫少壮,何斌. 秃杉林和连栽杉木林生态系统C积累及其分布格局. 亚热带农业研究. 2018(01): 29-33 .
    32. Zhou Gang,He Bin,Wei Jiaguo,Liu Fansheng,Mo Shaozhuang,Yang Zhengwen. Carbon Accumulation and Distribution in Ecosystems of Taiwania flousiana Plantation and Successive Rotation Plantation of Cunninghamia lanceolata. Meteorological and Environmental Research. 2018(04): 11-14+18 .
    33. 张期奇,董希斌,张甜,曲杭峰,马晓波,管惠文,王智勇,阮加甫,陈蕾. 抚育间伐强度对兴安落叶松中龄林测树因子的影响. 森林工程. 2018(05): 1-7+55 .
    34. 段梦成,王国梁,史君怡,周昊翔. 间伐对油松人工林碳储量的长期影响. 水土保持学报. 2018(05): 190-196 .
    35. 马长明,赵辉,牟洪香,刘炳响. 燕山山地华北落叶松人工林碳密度及分配特征. 水土保持学报. 2017(05): 208-214 .

    Other cited types(35)

Catalog

    Article views (2203) PDF downloads (82) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return