Citation: | WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. DOI: 10.13332/j.1000-1522.20160050 |
[1] |
COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31(31):471-505.
|
[2] |
CHAVES M M, MAROCO O P, PEREIRA O S. Understanding plant responses to drought: from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3):239-264.
|
[3] |
PILLITTERI L J, DONG J. Stomatal development in Arabidopsis [J]. Arabidopsis Book, 2012, 11(1):e0066.
|
[4] |
BERGMANN D, SACK F. Stomatal development[J]. Annual Review of Plant Biology, 2007, 58(4):163-181.
|
[5] |
CASSON S A, HETHERINGTON A M. Environmental regulation of stomatal development[J]. Current Opinion in Plant Biology, 2009, 13(1):90-95.
|
[6] |
KENTA H, RYOKO K, TORII K U, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule[J]. Genes & Development, 2007, 21(14):1720-1725.
|
[7] |
HARA K, YOKOO T, KAJITA R, et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves[J]. Plant & Cell Physiology, 2009, 50(6):1019-1031.
|
[8] |
TATSUHIKO K, RYOKO K, AYA M, et al. Stomatal density is controlled by a mesophyll-derived signaling molecule[J]. Plant & Cell Physiology, 2010, 51(1):1-8.
|
[9] |
SUGANO S S, TOMOO S, YU I, et al. Stomagen positively regulates stomatal density in Arabidopsis [J]. Nature, 2010, 463:241-244.
|
[10] |
NADEAU J A, SACK F D. Control of stomatal distribution on the Arabidopsis leaf surface[J]. Science, 2002, 296:1697-1700.
|
[11] |
SHPAK E D, JESSICA M M, LYNN J P, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Pediatrics, 2005, 115(Suppl.4):1160-1164.
|
[12] |
LEE J S, KUROHA T, HNILOVA M, et al. Direct interaction of ligand-receptor pairs specifying stomatal patterning[J]. Genes & Development, 2012, 26(2):126-136.
|
[13] |
BERGER D, ALTMANN T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana [J]. Genes & Development, 2000, 14(9):1119-1131.
|
[14] |
URITZA V G, DIETER B, THOMAS A. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development[J]. Plant Cell, 2002, 14(7):1527-1539.
|
[15] |
BERGMANN D C, WOLFGANG L, SOMERVILLE C R. Stomatal development and pattern controlled by a MAPKK kinase[J]. Science, 2004, 304:1494-1497.
|
[16] |
PILLITTERI L, TORII K. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development[J]. Bioessays, 2007, 29(9):861-70.
|
[17] |
WANG H, NGWENYAMA N, LIU Y, et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis [J]. Plant Cell, 2007, 19(1):63-73.
|
[18] |
MIYAZAWA S I, TURPIN D H. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar ( Populus trichocarpa×P. deltoides )[J]. Journal of Experimental Botany, 2006, 57(2):373-380.
|
[19] |
SAKURAI N, AKIYAMA M, KURAISHI S. Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings[J]. Plant & Cell Physiology, 1986, 27(6):1177-1185.
|
[20] |
QUARRIE S A, JONES H G. Effects of abscisic acid and water stress on development and morphology of wheat [J]. Journal of Experimental Botany, 1977, 28(1): 192-203.
|
[21] |
XU Z, ZHOU G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
|
[22] |
CLIFFORD S C, BLACK C R, ROBERTS J A, et al. The effect of elevated atmospheric CO 2 and drought on stomatal frequency in groundnut ( Arachis hypogaea (L.))[J]. Journal of Experimental Botany, 1995, 46(288): 847-852.
|
[23] |
CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1): 9-23.
|
[24] |
SHIMADA T, SUGANO S S, HARA-NISHIMURA I. Positive and negative peptide signals control stomatal density[J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2081-2088.
|
[1] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[2] | Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148 |
[3] | Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250 |
[4] | Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289 |
[5] | LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465 |
[6] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[7] | GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324 |
[8] | ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020 |
[9] | LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27. |
[10] | WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95. |
1. |
赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
![]() | |
2. |
任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
![]() | |
3. |
杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
![]() | |
4. |
赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 .
![]() | |
5. |
李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 .
![]() | |
6. |
刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
![]() | |
7. |
刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
![]() | |
8. |
周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
![]() | |
9. |
吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
![]() | |
10. |
张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
![]() | |
11. |
陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .
![]() |