Citation: | WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. DOI: 10.13332/j.1000-1522.20160050 |
[1] |
COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31(31):471-505.
|
[2] |
CHAVES M M, MAROCO O P, PEREIRA O S. Understanding plant responses to drought: from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3):239-264.
|
[3] |
PILLITTERI L J, DONG J. Stomatal development in Arabidopsis [J]. Arabidopsis Book, 2012, 11(1):e0066.
|
[4] |
BERGMANN D, SACK F. Stomatal development[J]. Annual Review of Plant Biology, 2007, 58(4):163-181.
|
[5] |
CASSON S A, HETHERINGTON A M. Environmental regulation of stomatal development[J]. Current Opinion in Plant Biology, 2009, 13(1):90-95.
|
[6] |
KENTA H, RYOKO K, TORII K U, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule[J]. Genes & Development, 2007, 21(14):1720-1725.
|
[7] |
HARA K, YOKOO T, KAJITA R, et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves[J]. Plant & Cell Physiology, 2009, 50(6):1019-1031.
|
[8] |
TATSUHIKO K, RYOKO K, AYA M, et al. Stomatal density is controlled by a mesophyll-derived signaling molecule[J]. Plant & Cell Physiology, 2010, 51(1):1-8.
|
[9] |
SUGANO S S, TOMOO S, YU I, et al. Stomagen positively regulates stomatal density in Arabidopsis [J]. Nature, 2010, 463:241-244.
|
[10] |
NADEAU J A, SACK F D. Control of stomatal distribution on the Arabidopsis leaf surface[J]. Science, 2002, 296:1697-1700.
|
[11] |
SHPAK E D, JESSICA M M, LYNN J P, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Pediatrics, 2005, 115(Suppl.4):1160-1164.
|
[12] |
LEE J S, KUROHA T, HNILOVA M, et al. Direct interaction of ligand-receptor pairs specifying stomatal patterning[J]. Genes & Development, 2012, 26(2):126-136.
|
[13] |
BERGER D, ALTMANN T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana [J]. Genes & Development, 2000, 14(9):1119-1131.
|
[14] |
URITZA V G, DIETER B, THOMAS A. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development[J]. Plant Cell, 2002, 14(7):1527-1539.
|
[15] |
BERGMANN D C, WOLFGANG L, SOMERVILLE C R. Stomatal development and pattern controlled by a MAPKK kinase[J]. Science, 2004, 304:1494-1497.
|
[16] |
PILLITTERI L, TORII K. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development[J]. Bioessays, 2007, 29(9):861-70.
|
[17] |
WANG H, NGWENYAMA N, LIU Y, et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis [J]. Plant Cell, 2007, 19(1):63-73.
|
[18] |
MIYAZAWA S I, TURPIN D H. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar ( Populus trichocarpa×P. deltoides )[J]. Journal of Experimental Botany, 2006, 57(2):373-380.
|
[19] |
SAKURAI N, AKIYAMA M, KURAISHI S. Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings[J]. Plant & Cell Physiology, 1986, 27(6):1177-1185.
|
[20] |
QUARRIE S A, JONES H G. Effects of abscisic acid and water stress on development and morphology of wheat [J]. Journal of Experimental Botany, 1977, 28(1): 192-203.
|
[21] |
XU Z, ZHOU G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
|
[22] |
CLIFFORD S C, BLACK C R, ROBERTS J A, et al. The effect of elevated atmospheric CO 2 and drought on stomatal frequency in groundnut ( Arachis hypogaea (L.))[J]. Journal of Experimental Botany, 1995, 46(288): 847-852.
|
[23] |
CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1): 9-23.
|
[24] |
SHIMADA T, SUGANO S S, HARA-NISHIMURA I. Positive and negative peptide signals control stomatal density[J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2081-2088.
|
[1] | Wang Xuerui, Yue Qingmin, Hao Minhui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Modeling and parameter optimization of net primary productivity in the Korean pine-broadleaved forests of northeast China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250026 |
[2] | Xu Jianwei, Luo Haifeng, Kan Jiangming, Li Wenbin, Tong Siyuan. Underground self-sealing pressure injection equipment for forest and fruit trees[J]. Journal of Beijing Forestry University, 2023, 45(6): 137-144. DOI: 10.12171/j.1000-1522.20220514 |
[3] | Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351 |
[4] | Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389 |
[5] | LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131 |
[6] | XU Mei-jun, LI Li, LUO Bin. Factors affecting sanding force and optimal sanding parameters of Populus.[J]. Journal of Beijing Forestry University, 2015, 37(1): 122-133. DOI: 10.13332/j.cnki.jbfu.2015.01.002 |
[7] | CAO Lin, DAI Jin-song, XU Jian-xin, XU Zi-qian, SHE Guang-hui. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5): 13-21. DOI: 10.13332/j.cnki.jbfu.2014.05.009 |
[8] | ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134. |
[9] | WANG Ping-hua, CHEN Li-hua, JI Xiao-dong, SONG Heng-chuan, GAI Xiao-gang, JIANG Kun-yun, Lv Chun-juan. Establishing an integrated mechanical model of root tensile strength—taking four common arbor species in North China for example[J]. Journal of Beijing Forestry University, 2012, 34(1): 39-45. |
[10] | LUO Bin, YIN Ya-fang, JIANG Xiao-mei, LUO Xiu-qin, LIU Bo, GUO Qi-rong. Evaluating bending and compressive strength properties of Eucalyptus grandia×E. urophylla plantation wood with three nondestructive methods[J]. Journal of Beijing Forestry University, 2008, 30(6): 137-140. |
1. |
赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 .
![]() | |
2. |
刘燕,唐斌,万川,何叶,胡文刚. 实木家具斜角接合结构的可拆装设计与评估. 林产工业. 2023(04): 38-42+50 .
![]() | |
3. |
陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 .
![]() |