• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhu Jiyou, Xu Chengyang, Wu Ju. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. DOI: 10.13332/j.1000-1522.20170412
Citation: Zhu Jiyou, Xu Chengyang, Wu Ju. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. DOI: 10.13332/j.1000-1522.20170412

Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition

More Information
  • Received Date: November 21, 2017
  • Revised Date: January 24, 2018
  • Published Date: April 30, 2018
  • ObjectiveLeaf stomatal is a main channel used as exchange matter between plants and environment, which is very sensitive to environmental changes. How to calculate stomatal area and openness data quickly and accurately still lacks mature methods and techniques. This paper aims to explore the quantitative calculation of leaf stomatal density and stomatal area, and provide reference for future research on plant stomatal by this way.
    MethodThis study chose the leaf of Fraxinus pennsylvanica, Ailanthus altissima and Sophora japonica as objects, analyzing stomatal information by multi-scale segmentation and classification recognition and classifying the leaf stomatal microscopic images via eCognition image processing software. The stomatal imagines were classified and identified based on the spectral characteristics, bcenterness characteristics and geometric features of the objects.
    ResultThe results showed that the best parameters of the stomatal division and the combination of automatic extraction rules were: scale parameters 120-125, shape parameter 0.7, compactness parameter 0.9, bcenterness value 160-220, red light band> 95, shape-density index 1.5-2.2.
    ConclusionThe precision of stomatal density and stomatal area extracted by this method was 99.2% and 94.5%, respectively and the results were satisfactory. So the method is suitable for rapid extraction of stomatal information in plant leaves.
  • [1]
    王瑞丽, 于贵瑞, 何念鹏, 等.气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J].生态学报, 2016, 36(8): 2175-2184. http://d.old.wanfangdata.com.cn/Periodical/stxb201608008

    Wang R L, Yu G R, He N P, et al. Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36 (8):2175-2184. http://d.old.wanfangdata.com.cn/Periodical/stxb201608008
    [2]
    高冠龙, 张小由, 常宗强, 等.植物气孔导度的环境响应模拟及其尺度扩展[J].生态学报, 2016, 36(6):1491-1500. http://d.old.wanfangdata.com.cn/Periodical/stxb201606002

    Gao G L, Zhang X Y, Chang Z Q, et al.Environment response simulation and the up-scaling of plant stomatal conductance[J]. Acta Ecologica Sinica, 2016, 36 (6):1491-1500. http://d.old.wanfangdata.com.cn/Periodical/stxb201606002
    [3]
    王艳萍, 刘胜利, 陈玉珍, 等. 3种长白山高山杜鹃叶片结构及其对环境的适应性[J].北京林业大学学报, 2012, 34(4):18-25. http://j.bjfu.edu.cn/article/id/9771

    Wang Y P, Liu S L, Chen Y Z, et al.Leaf structural characteristics of three wild Rhododendron plants and their adaptation to Changbai Mountains, northeastern China[J].Journal of Beijing Forestry University, 2012, 34 (4):18-25. http://j.bjfu.edu.cn/article/id/9771
    [4]
    熊慧, 马承恩, 李乐, 等.不同生境条件下蕨类和被子植物的气孔形态特征及其对光强变化的响应[J].植物生态学报, 2014, 38(8):868-877. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201408007

    Xiong H, Ma C E, Li L, et al.Stomatal characteristics of ferns and angiosperms and their responses to changing light intensity at different habitats[J].Acta Phytoecologia Sinica, 2014, 38 (8):868-877. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201408007
    [5]
    司怀通, 于天卉, 关心怡, 等.红树林植物气孔对环境因子的响应及其与水力功能的协调[J].植物生理学报, 2017, 53(3):487-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201703021

    Si H T, Yu T H, Guan X Y, et al.Stomatal responses to environmental factors and its coordination with hydraulic functions in plants of mangrove forests[J].Acta Phytojournal of Plant Physiology, 2017, 53 (3):487-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201703021
    [6]
    刘小刚, 万梦丹, 齐韵涛, 等.不同遮阴下亏缺灌溉对小粒咖啡生长和水光利用的影响[J].农业机械学报, 2017, 48(1):191-197. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701025

    Liu X G, Wan M D, Qi Y T, et al.Effect of deficit irrigation on growth and water radiation use of arabica coffee under different shading[J].Transaction of the Chinese society for agricultural Mechinery, 2017, 48 (1):191-197. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701025
    [7]
    张川红, 尹伟伦, 沈应柏.盐胁迫对国槐与核桃气孔的影响[J].北京林业大学学报, 2002, 24(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200202001

    Zhang C H, Yin W L, Shen Y B. Effects of salt stress on stomatal of Sophora japonica and Juglans regia[J].Journal of Beijing Forestry University, 2002, 24(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb200202001
    [8]
    郑云普, 徐明, 王建书, 等.玉米叶片气孔特征及气体交换过程对气候变暖的响应[J].作物学报, 2015, 41(4):601-612. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201504012

    Zheng Y P, Xu M, Wang J S, et al.Response of stomatal traits and gas exchange of maize leaves to climate warming[J].Acta Agronomica Sinica, 2015, 41 (4):601-612. http://d.old.wanfangdata.com.cn/Periodical/zuowxb201504012
    [9]
    王曙光, 李中青, 贾寿山, 等.小麦叶片气孔性状与产量和抗旱性的关系[J].应用生态学报, 2013, 24(6):1609-1614. http://d.old.wanfangdata.com.cn/Periodical/yystxb201306019

    Wang S G, Li Z Q, Jia S S, et al.Relationships of wheat leaf stomatal traits with yield and drought resistance[J].Chinese Journal of Applied Ecology, 2013, 24 (6):1609-1614. http://d.old.wanfangdata.com.cn/Periodical/yystxb201306019
    [10]
    魏琳, 张卫国, 任柏林, 等.小麦离体表皮上气孔对若干关键生理因子的应答反应[J].植物生理学报, 2015, 51(5):649-654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201505010

    Wei L, Zhang W G, Ren B L, et al.Stomatal response to several key physiological factors using epidermal strips of wheat[J].Plant Physiology Journal, 2015, 51(5):649-654. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201505010
    [11]
    徐俊增, 彭世彰, 魏征, 等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J].农业工程学报, 2010, 26(7):76-80. doi: 10.3969/j.issn.1002-6819.2010.07.013

    Xu J Z, Peng S Z, Wei Z, et al.Intercellular CO2 concentration and stomatal or non-stomatal limitation of rice under water saving irrigation[J].Transactions of the CSAE, 2010, 26(7):76-80. doi: 10.3969/j.issn.1002-6819.2010.07.013
    [12]
    金欣欣, 石建初, 李森, 等.根系吸水模型模拟覆膜旱作水稻气孔导度[J].农业工程学报, 2017, 33(9):107-115. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201709014

    Jin X X, Shi J C, Li S, et al.Modeling stomatal conductance using root-water-up take in ground cover rice production system[J].Transactions of the CSAE, 2017, 33(9):107-115. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201709014
    [13]
    李郁竹, 曾燕.应用NOAA/AVHRR数据测算局地水稻种植面积方法研究[J].遥感学报, 1998, 2(2):125-130. http://www.cnki.com.cn/Article/CJFDTotal-YGXB802.008.htm

    Li Y Z, Zeng Y.Study on method of rice planting area estimation at regional scale using NOAA / AVHRR data[J].Journal of Remote Sensing, 1998, 2(2):125-130. http://www.cnki.com.cn/Article/CJFDTotal-YGXB802.008.htm
    [14]
    Wardlow B D, Egbert S L.Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2008, 112(3):1096-1116. doi: 10.1016/j.rse.2007.07.019
    [15]
    Sulong I, Mohd-Lokman H, Mohd-Tannizi K, et al.Mangrove mapping using Landsat imagery and aerial photographs:Kemaman district, Terengganu Malaysia[J].Environment Development & Sustainability, 2002, 4(2):135-152. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021084352/
    [16]
    李明泽, 于欣彤, 高元科, 等.基于SAR极化分解与Landsat数据的森林生物量遥感估测[J].北京林业大学学报, 2018, 40(2):1-10. doi: 10.13332/j.1000-1522.20170284

    Li M Z, Yu X T, Gao Y K, et al.Remote sensing quantification on forest biomass based on SAR poparization decomposition and Landsat data[J].Journal of Beijing Forestry University, 2018, 40(2):1-10. doi: 10.13332/j.1000-1522.20170284
    [17]
    Ghassemian H, Landgrebe D A.Object-oriented feature extraction method for image data compaction[J].IEEE Control Systems Magazine, 2002, 8(3):42-48. doi: 10.1109-37.476/
    [18]
    Laliberte A S, Rango A, Havstad K M, et al. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico[J].Remote Sensing of Environment, 2004, 93(1):198-210. http://cn.bing.com/academic/profile?id=e4d4e774a5783acf5781a0cea28e1bec&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    赵辉, 郑有飞, 曹嘉晨, 等.大气臭氧污染对冬小麦气孔吸收通量的影响机制及其时空格局[J].环境科学, 2017, 38(1):412-422. http://d.old.wanfangdata.com.cn/Periodical/hjkx201701050

    Zhao H, Zheng Y F, Cao J C, et al.Effects of atmospheric ozone pollution on stomatal absorption flux of winter wheat and its spatial and temporal patterns[J].Chinese Journal of Environmental Science, 2017, 38 (1):412-422. http://d.old.wanfangdata.com.cn/Periodical/hjkx201701050
    [20]
    Johansen K, Arroyo L A, Phinn S, et al.Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery[J].Photogrammetric Engineering and Remote Sensing, 2010, 76(2):123-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=297995993bc33803fc36dc886c3d6577
    [21]
    Lucas R, Rowlands A, Brown A, et al.Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping[J].Isprs Journal of Photogrammetry & Remote Sensing, 2007, 62(3):165-185. doi: 10.1016-j.isprsjprs.2007.03.003/
    [22]
    李春干, 邵国凡. Landsat 7 ETM+图像森林分类的辅助数据研究[J].北京林业大学学报, 2010, 32(4): 1-5. doi: 10.3969/j.issn.1671-6116.2010.04.001

    Li C G, Shao G F.Using Landsat 7 ETM+ images as ancillary data for forest cover classification of SPOTS 5 images[J].Journal of Beijing Forestry University, 2010, 32(4):1-5. doi: 10.3969/j.issn.1671-6116.2010.04.001
    [23]
    魏晶昱, 毛学刚, 方本煜, 等.基于Landsat 8 OLI辅助的亚米级遥感影像树种识别[J].北京林业大学学报, 2016, 38(11):23-33. doi: 10.13332/j.1000-1522.20160054

    Wei J Y, Mao X G, Fang B Y, et al.Submeter remote sensing image recognition of trees based on Landsat 8 OLI support[J].Journal of Beijing Forestry University, 2016, 38(11):23-33. doi: 10.13332/j.1000-1522.20160054
    [24]
    贾旭梅, 王延秀, 党兆霞, 等.八棱海棠上11个矮化砧木生长及其叶片解剖特性的研究[J].西北植物学报, 2017, 37(6):1126-1136. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201706010

    Jia X M, Wang Y X, Dang Z X, et al.The growth and leaf anatomical characteristics of 11 dwarf rootstocks in Mulus robusta Rehd[J].Northwest Botany, 2017, 37 (6):1126-1136. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201706010
    [25]
    王丛鹏, 贾伏丽, 刘沙, 等.干旱对欧美杨气孔发育的影响[J].北京林业大学学报, 2016, 38(6):28-34. doi: 10.13332/j.1000-1522.20160050

    Wang C P, Jia F L, Liu S, et al.Drought induces alterations in stomatal development in Populus deltoidesn P. nigra[J].Journal of Beijing Forestry University, 2016, 38(6):28-34. doi: 10.13332/j.1000-1522.20160050
  • Related Articles

    [1]Fan Yinglong, Tang Sainan, Tan Bingxiang. Forest cover change detection based on multi-scale segmentation and tasseled cap transformation over plateau area[J]. Journal of Beijing Forestry University, 2023, 45(4): 60-69. DOI: 10.12171/j.1000-1522.20220375
    [2]Wu Xue, Chen Rong, Zhang Yunlu. Recognition and assessment method of rural landscape characters for multi-type and multi-scale collaborative transmission: taking the Horqin Right Front Banner, Inner Mongolia of northern China as an example[J]. Journal of Beijing Forestry University, 2022, 44(11): 111-121. DOI: 10.12171/j.1000-1522.20210553
    [3]Yu Ying, Liu Min, Fan Wenyi, Wei Tiantian, Cheng Tenghui, Jiang Bo, Zhang Yue. Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models[J]. Journal of Beijing Forestry University, 2020, 42(10): 27-35. DOI: 10.12171/j.1000-1522.20190190
    [4]Wu Yanshuang, Zhang Xiaoli. Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images[J]. Journal of Beijing Forestry University, 2020, 42(6): 91-101. DOI: 10.12171/j.1000-1522.20190155
    [5]Wang Xiaosong, Yang Gang. A multi-objective optimization segmentation method for tree image based on fusion clustering and classification algorithm[J]. Journal of Beijing Forestry University, 2018, 40(12): 124-131. DOI: 10.13332/j.1000-1522.20180160
    [6]FENG Jing-jing, ZHANG Xiao-li, LIU Hui-ling.. Single tree crown extraction based on gray gradient image segmentation[J]. Journal of Beijing Forestry University, 2017, 39(3): 16-23. DOI: 10.13332/j.1000-1522.20160373
    [7]FENG Jing-jing, ZHANG Xiao-li, LIU Hui-ling. Single tree crown extraction based on gray gradient image segmentation[J]. Journal of Beijing Forestry University, 2017, 39(3): 16-23. DOI: 10.13332/j.1000--1522.20160373
    [8]GAO Jie, ZHANG Jun, CHENG Yan-xia, SUN Guo-wen. Multi-scale analysis on spatial patterns and tree species diversity in different forest types in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(6): 99-105. DOI: 10.13332/j.cnki.jbfu.2014.06.019
    [9]YAO Yi-tong, YUAN Zheng-long, WEI Yan-bo, ZHAO Xiu-hai. Multi-scale analysis on tree diversity pattern in a secondary Populus davidiana-Betula platyhylla forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(6): 86-92. DOI: 10.13332/j.cnki.jbfu.2014.06.017
    [10]MA Qing-wen, LI Feng-lan, LI Cheng-sen. Coefficients of variation and factors affecting stomatal parameters.[J]. Journal of Beijing Forestry University, 2005, 27(1): 19-23.

Catalog

    Article views (3476) PDF downloads (115) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return