• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
GUO Xin, WU Peng, HAN Wei, LI Qiao-yan, YANG Lei, AN Hai-long, WANG Xiang-ping.. The influence of succession stages and climate on soil organic carbon density of broad-leaved Korean pine forest.[J]. Journal of Beijing Forestry University, 2016, 38(7): 55-63. DOI: 10.13332/j.1000-1522.20160060
Citation: GUO Xin, WU Peng, HAN Wei, LI Qiao-yan, YANG Lei, AN Hai-long, WANG Xiang-ping.. The influence of succession stages and climate on soil organic carbon density of broad-leaved Korean pine forest.[J]. Journal of Beijing Forestry University, 2016, 38(7): 55-63. DOI: 10.13332/j.1000-1522.20160060

The influence of succession stages and climate on soil organic carbon density of broad-leaved Korean pine forest.

More Information
  • Received Date: March 01, 2016
  • Published Date: July 29, 2016
  • Broad-leaved Korean pine (Pinus koraiensis) forest and its secondary forests are important forest carbon sinks in northeast China and store a large amount of organic carbon in the soil. In this study we measured soil organic carbon density (SOCD) for different succession stages of Broad-leaved Korean pine forest at four typical sites (Changbai Mountain, Jiaohe, Wuying and Shengshan). We analysed total SOCD (0-60 cm), SOCD at the depth of 0-20 cm (topsoil) and the ratio of topsoil to total SOCD (top/total ratio) in relation to abiotic and biotic factors. The results showed that total and topsoil SOCD, and top/total ratio, changed differently with forest succession in different sites. Total SOCD was not related to latitude and three key climatic indices: mean temperature of the coldest month (MTCM), annual precipitation (AP), and warmth index (WI), while topsoil SOCD and top/total ratio were negatively related to latitude and positively related to MTCM. Multivariate analyses showed that total SOCD was less affected by climate than topsoil SOCD. Succession stage itself was not significant in explaining the SOCD variables, but the interaction of succession stage with temperature indices (MTCM and WI) showed a significant role for total SOCD and top/total SOCD ratio. In addition, total and topsoil SOCD were also significantly affected by slope position. Our results showed that topsoil SOCD was affected by climate and local topography. Total SOCD, however, is affected by a number of factors together. In addition to the weak direct effect of climate, community structure (lifeform and stand volume), local topography and the interaction of climate with succession stage also showed a significant effect on total SOCD.
  • [1]
    BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests [J]. Science, 2008, 320: 1444-1449.
    [1]
    POST W M, EMANUEL W R, ZINKE P J, et al. Soil carbon pools and world life zones [J]. Nature, 1982, 298: 156-159.
    [2]
    SCHIPPER L A, BAISDEN W T, PARFITT R L, et al. Large losses of soil C and N from soil profiles under pasture in New Zealand during the past 20 years [J]. Global Change Biology, 2007, 13(6): 1138-1144.
    [3]
    JOHNSTON C A, GROFFMAN P, BRESHEARS D D, et al. Carbon cycling in soil [J]. Front Ecol Environ, 2004, 2(10): 522-528.
    [4]
    TIAN H, MELILLO J, LU C, et al. Chinas terrestrial carbon balance: contributions from multiple global change factors [J]. Global Biogeochemical Cycles, 2011, 25(1): 1007-1022.
    [5]
    WANG S, WANG Z, PIAO S, et al. Regional differences in the timing of recent air warming during the past four decades in China [J]. Chinese Science Bulletin, 2010, 55(19): 1968-1973.
    [6]
    CALLESEN I, LISKI J, RAULUND-RASMUSSEN K, et al. Soil carbon stores in Nordic well-drained forest soilsrelationships with climate and texture class [J]. Global Change Biology, 2003, 9(3): 358-370.
    [7]
    YANG Y, LI P, DING J, et al. Increased topsoil carbon stock across Chinas forests [J]. Global Change Biology, 2014, 20(8): 2687-2696.
    [8]
    齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响 [J]. 生态学报, 2013, 33(10): 3065-3073.
    [9]
    QI L, YU D P, ZHOU W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains [J]. Acta Ecologica Sinica, 2013, 33(10):3065-3073.
    [10]
    宋文艺, 蔡慧颖, 金光泽, 等. 黑龙江省不同地区红松人工林碳密度及其分配 [J]. 植物研究, 2014, 34(5): 619-625.
    [11]
    SONG W Y, CAI H Y, JIN G Z, et al. Carbon density and Its distribution of Pinus koraiensis plantations in different regions of Heilongjiang Province [J]. Bulletin of Botanical Research,2014, 34(5): 619-625.
    [12]
    魏亚伟, 周旺明, 于大炮, 等. 我国东北天然林保护工程区森林植被的碳储量 [J]. 生态学报, 2014, 34(20): 5696-5705.
    [13]
    WEI Y W, ZHOU W M, YU D P, et al. Carbon storage of forest vegetation under the Natural Forest Protection Program in Northeast China [J]. Acta Ecologica Sinica, 2014, 34(20):5696-5705.
    [14]
    LUAN J, LIU S, ZHU X, et al. Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China [J]. Plant Soil, 2011, 347(1-2): 243-253.
    [15]
    魏亚伟, 于大炮, 王清君, 等. 东北林区主要森林类型土壤有机碳密度及其影响因素 [J]. 应用生态学报, 2013, 24(12): 3333-3340.
    [16]
    WEI Y W, YU D P, WANG Q J, et al. Soil organic carbon density and its influencing factors of major forest types in the forest region of Northeast China [J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3333-3340.
    [17]
    吴建国, 张小全, 徐德应. 六盘山林区几种土地利用方式下土壤活性有机碳的比较 [J]. 植物生态学报, 2004, 28(5): 657-664.
    [18]
    WU J G, ZHANG X Q, XU D Y. Changes in soil labile organic carbon under different land use in the liupan mountain forest zone[J]. Acta Phytoecologica Sinica, 2004, 28(5): 657-664.
    [19]
    TRUMBORE S. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics [J]. Ecological Applications, 2000, 10(2): 399-411
    [20]
    刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展 [J]. 生态学报, 2011, 31(19): 5437-5448.
    [21]
    LIU S R, WANG H, LUAN J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China [J]. Acta Ecologica Sinica, 2011, 31(19): 5437-5448.
    [22]
    张城, 王绍强, 于贵瑞, 等. 中国东部地区典型森林类型土壤有机碳储量分析[J]. 资源科学, 2006, 28(2): 97-103.
    [23]
    ZHANG C, WANG S Q, YU G R, et al. Soil organic carbon storage in typical forestland in east China [J]. Resources Science, 2006, 28(2): 97-103.
    [24]
    TIAN Q, HE H, CHENG W, et al. Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient [J]. Scientific Reports, 2016, 6: e18783.
    [25]
    DENG L, WANG K, CHEN M, et al. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China [J]. Catena, 2013, 110: 1-7.
    [26]
    LAI Z, ZHANG Y, LIU J, et al. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China [J]. Forest Ecology and Management, 2016, 359: 381-388.
    [27]
    HU Y, SU Z, LI W, et al. Influence of tree species composition and community structure on carbon density in a subtropical forest [J]. Plos One, 2015, 10(8): e0136984.
    [28]
    CHEN L, HE Z, DU J, et al. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China [J]. Catena, 2016, 137: 37-43.
    [29]
    WYNN J G, BIRD M I, VELLEN L, et al. Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls [J]. Global Biogeochemical Cycles, 2006, 20(1): 630-637.
    [30]
    李克让, 王绍强, 曹明奎. 中国植被和土壤碳贮量 [J]. 中国科学(D辑:地球科学), 2003, 33(1): 72-80.
    [31]
    LI K R, WANG S Q, CAO M K. China vegetation and soil carbon [J]. Science in China (Series D), 2003, 33(1): 72-80.
    [32]
    JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications, 2000, 2(10): 423-436.
    [33]
    WANG S Q, HUANG M, SHAO X, et al. Vertical distribution of soil organic carbon in China[J]. Environmental Management, 2004, 33(Suppl.1): 200-209.
    [34]
    周涛, 史培军, 王绍强. 气候变化及人类活动对中国土壤有机碳储量的影响 [J]. 地理学报, 2003, 58(5): 727-734.
    [35]
    ZHOU T, SHI P J, WANG S Q. Impacts of climate change and human activities on soil carbon storage in China[J]. Acta Geographica Sinica, 2003, 58(5): 727-734.
    [36]
    ZHU B, WANG X P, FANG J Y, et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China [J]. Journal of Plant Research, 2010, 123(4): 439-452.
    [37]
    CHAPIN III F S, ZAVALETA E S, EVINER V T, et al. Consequences of changing biodiversity [J]. Nature, 2000, 405: 234-242.
    [38]
    VITOUSEK P, MOONEY H, LUBCHENCO J, et al. Human domination of Earths ecosystems [J]. Science, 1997, 277: 494-499.
    [39]
    丁圣彦, 宋永昌. 常绿阔叶林植被动态研究进展 [J]. 生态学报, 2004, 24(8): 1769-1779.
    [40]
    DING S Y, SONG Y C. Research advances in vegetation dynamic of evergreen broad-leaved forest [J]. Acta Ecologica Sinica, 2004, 24(8): 1769-1779.
    [41]
    胡海清, 罗碧珍, 魏书精, 等. 小兴安岭7种典型林型林分生物量碳密度与固碳能力 [J]. 植物生态学报, 2015, 39(2): 140-158.
    [42]
    HU H Q, LUO B Z, WEI S J, et al. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxingan Mountains, China [J]. Acta Phytoecologica Sinica, 2015, 39(2): 140-158.
    [43]
    杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 83-90.
    [44]
    YANG J Y, WANG C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China [J]. Acta Ecologica Sinica, 2005, 25(11): 83-90.
    [45]
    宋彦彦, 史宝库, 张言, 等. 长白山8种林型土壤有机碳和全氮的质量分数及垂直分布特征[J]. 东北林业大学学报, 2014, 42(12): 94-97.
    [46]
    SONG Y Y, SHI B K, ZHANG Y, et al. Contents and vertical distribution characteristics of soil organic carbon and total nitrogen of eight forest types in the Changbai Mountain [J]. Journal of Northeast Forester University, 2014, 42(12): 94-97.
    [47]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 25-34.
    [48]
    BAO S D. Soil analysis [M].Beijing: China Agriculture Press, 2000: 25-34.
    [49]
    WANG X, TANG Z, FANG J. Climatic control on forests and tree species distribution in the forest region of northeast China [J]. Journal of Integrative Plant Biology, 2006, 48(7): 778-789.
    [50]
    解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子 [J]. 土壤学报, 2004, 41(5): 687-699.
    [51]
    XIE X L, SUN B, ZHOU H Z, et al. Soil carbon stocks and their influencing factors under native vegetations in China [J]. Acta Pedologica Sinica, 2004,41(5): 687-699.
    [52]
    张新平, 王襄平, 朱彪, 等. 我国东北主要森林类型的凋落物产量及其影响因 [J]. 植物生态学报, 2008, 32(5): 1031-1040.
    [53]
    ZHANG X P, WANG X P, ZHU B, et al. Litter fall production in relation to environmental factors in northeast Chinas forests [J]. Acta Phytoecologica Sinica, 2008, 32(5): 1031-1040.
    [54]
    方精云. 地理要素对我国温度分布影响的数量评价 [J]. 生态学报, 1992, 12(2): 97-104.
    [55]
    FANG J Y. Study on geographic elements affecting temperature distribution in China [J]. Acta Ecologica Sinica, 1992, 12(2): 97-104.
    [56]
    SCHIMEL J P, FAHNESTOCK J, MICHAELSON G, et al. Cold-season production of CO2 in arctic soils: can laboratory and field estimates be reconciled through a simple modeling approach [J]. Arctic Antarctic and Alpine Research, 2006, 38(2): 249-256.
  • Cited by

    Periodical cited type(3)

    1. 胡馨丹,李瑶,张小花,梁娟红,张腾国. 外源ATP对油菜幼苗耐寒性的影响. 植物研究. 2021(02): 302-311 .
    2. 武永强,杨帆. 干扰Arf6抑制人前列腺癌细胞系DU145增殖、迁移及侵袭. 基础医学与临床. 2019(09): 1310-1315 .
    3. 王浩然,吕雪芹,张越,满奕,荆艳萍. eATP在植物生长发育及逆境胁迫中的作用. 电子显微学报. 2017(01): 83-90 .

    Other cited types(0)

Catalog

    Article views (1765) PDF downloads (25) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return