• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002
Citation: ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002

Distributional change in suitable areas for Toona sureni based on MaxEnt model

More Information
  • Received Date: January 03, 2017
  • Revised Date: May 21, 2017
  • Published Date: July 31, 2017
  • Climate change influences biodiversity by altering the habitat of species in ecosystem. Toona sureni is a timber plant with high ecological, economic and medicinal value. It is called "Chinese mahogany" in China with other species in Toona. Understanding the habitat requirements, evaluating habitat quality and predicting the species' potential habitat are significant for protecting T.sureni, as well as for its protection introduction and plantation. Because of the advantages of using presence-only data and performing well with small sample sizes, incomplete data and gaps, MaxEnt model was employed to simulate the habitat suitability distribution, and the area under the receive operating characteristic curve(AUC)was used to examine the model's accuracy, the larger the AUC is, the more accurate the prediction is. So, based on the distribution of T. sureni in Yunnan Province of southwestern China, the MaxEnt model was used to set up its distributional model of potential habitat. The results showed that the mean training AUC and mean test AUC were 0.959 and 0.818, respectively. It is illustrated that the prediction of T.sureni's suitable habitats was reliable. Five variables, namely standard deviation of temperature seasonal change, minimum temperature of the coldest month(℃), mean temperature of the driest quarter(℃), precipitation of the coldest quarter (mm), range of annual temperature were significant factors determining T. sureni 's suitable habitat. Habitat suitability for current and future climate warming(2050s, 2070s) under scenario RCP2.6 in Yunnan Province and China was calculated. The study reports the intuitive and quantitative predictions of climate change on T. sureni species' suitable habitats. The habitat suitability of T.sureni in Yunnan Province and China is predicted to deteriorate with global warming.
  • [1]
    吴征镒.云南植物志(第一卷)[M].北京:科学出版社, 1977: 210-215.

    WU Z Y. Flora of Yunnan (volume 1)[M]. Beijing: Science Press, 1977: 210-215.
    [2]
    彭华, JENNIFER M E.中国植物志(英文), 第11卷[M].北京:科学出版社, 2008: 275-281.

    PENG H, JENNIFER M E. Flora of China (English), volume 11[M]. Beijing: Science Press, 2008: 275-281.
    [3]
    LU A P, JIA H W, XIAO C, et al. Theory of traditional Chinese medicine and therapeutic method of diseases[J]. World Journal of Gastroenterology, 2004, 10(13):1854-1856. doi: 10.3748/wjg.v10.i13.1854
    [4]
    CHEN H, JIN M, WANG Y F, et al. Effect of Toona microcarpa Harms leaf extract on the coagulation system[J]. BioMed Research International, 2014, 13:1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003277905
    [5]
    XIN F, YING T D, HONG P H, et al. Chemical constituents of Toona microcarpa (C. DC.) Harms in Engl. (Meliaceae)[J]. Biochemical Systematics and Ecology, 2010, 38:128-130. doi: 10.1016/j.bse.2009.12.039
    [6]
    周翔宇.中国香椿属的研究[D].南京: 南京林业大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y749432

    ZHOU X Y. Studies on the genus Toona of China[D]. Nanjing: Nanjing Forestry University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y749432
    [7]
    鲁正宏.云南香椿属植物的分类研究[D].昆明: 云南大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1586478

    LU Z H. Studies on the classification of the genus Toona in Yunnan[D]. Kunming: Yunnan University, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1586478
    [8]
    傅立国.中国植物红皮书[M].北京:科学出版社, 1992:89.

    FU L G. China rare and endangered plants[M]. Beijing: Science Press, 1992:89.
    [9]
    邹高顺.珍贵速生树种红椿与毛红椿引种栽培研究[J].福建林学院学报, 1994, 14(3):271-276. doi: 10.1161-01.ATV.15.2.228/

    ZOU G S. The study on introduction and cultivation on valuable fast: growing species of Toona ciliata and Toona ciliata var. pubescens [J]. Journal of Fujian College of Forestry, 1994, 14(3): 271-276. doi: 10.1161-01.ATV.15.2.228/
    [10]
    宗世贤, 陶金川, 杨志斌, 等.毛红椿的生态地理分布及其南京引种的初步观察[J].植物生态学报, 1988, 23(3):256-261. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB198803006.htm

    ZONG S X, TAO J C, YANG Z B, et al. Ecogeograpical distribution of Toona ciliate var. pubescens and preliminary observation on its introduction in Nanjing[J]. Journal of Plant Ecology, 1988, 23(3): 256-261. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB198803006.htm
    [11]
    GRINNELL J. Field tests of theories concerning distributional control[J]. American Naturalist, 1917, 51:115-128. doi: 10.1086/279591
    [12]
    STOCKWELL D, PETERS D P. The GARP modelling system: problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information Science, 1999, 13(2):143-158. doi: 10.1080/136588199241391
    [13]
    JONES P G, GUARINO L, JARVIS A. Computer tools for spatial analysis of plant genetic resources data: 2. flora map[J]. Plant Genetic Resources Newsletter, 2002, 130:6-10.
    [14]
    孙文涛, 刘雅婷.生物入侵风险分析的研究进展[J].中国农学通报, 2010, 26(7): 233-236. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201007050

    SUN W T, LIU Y T. Research progress of risk analysis of biological invasion[J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 233-236. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201007050
    [15]
    BOOTH T H, NIX H A, BUSBY J R, et al. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies[J]. Diversity & Distributions, 2014, 20(1): 1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_806e4778003a94f48671f1a0d3be2600
    [16]
    BONIN G. Signification bioclimatique des pelouses ecorchees sur les montagnes du pourtour mediterraneen, leurs relations avec les forets D'Altitude[J]. Bulletin De La Société Botanique De France, 2014, 118(Suppl. 2):17-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00378941.1971.10838983
    [17]
    KHORMI H M, KUMAR L. Climate change and the potential global distribution of aedes aegypti: spatial modelling using GIS and CLIMEX[J]. Geospatial Health, 2014, 8(2): 405-415. doi: 10.4081/gh.2014.29
    [18]
    SHABANI F, KUMAR L. Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera [J]. Plos One, 2014, 9(4):948-967. https://www.ncbi.nlm.nih.gov/pubmed/24722140
    [19]
    PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231-259. doi: 10.1016/j.ecolmodel.2005.03.026
    [20]
    ZHU G P, LIU C, MIN L I, et al. Potential geographical distribution of Sinoxylon japonicum (Coleoptera: Bostrichidae) in China based on MaxEnt and GARP models[J]. Acta Entomologica Sinica, 2014, 57(5):581-586. http://d.old.wanfangdata.com.cn/Periodical/kcxb201405010
    [21]
    PLASTINO A, ROCCA M C, PENNINI F. Troublesome aspects of the Renyi-MaxEnt treatment[J/OL]. Physical Review B, 2016, 94(1): 012145. doi: 10.1103/PhysRevE.94.012145.https://doi.org/10.1103/PhysRevE.94.012145.
    [22]
    KUMAR S, YEE W L, NEVEN L G. Mapping global potential risk of establishment of Rhagoletis pomonella (Diptera: Tephritidae) using MaxEnt and CLIMEX niche models[J]. Journal of Economic Entomology, 2016, 109(5): 166-177. https://www.ncbi.nlm.nih.gov/pubmed/27452001
    [23]
    GUISAN A, GRAHAM C H, ELITH J, et al. The NCEAS species distribution modelling group sensitivity of predictive species distribution models to change in grain size[J]. Diversity Distribution, 2007, 13(3): 332-340. doi: 10.1111/j.1472-4642.2007.00342.x
    [24]
    YI Y J, CHENG X, YANG Z F, et al. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia, Lour) in Yunnan, China[J]. Ecological Engineering, 2016, 92:260-269. doi: 10.1016/j.ecoleng.2016.04.010
    [25]
    徐永椿.云南树木图志(上册)[M].昆明:云南科技出版社, 1988: 748-754.

    XU Y C. Iconographia arbororun yunnanicorum(Rudin)[M]. Kuming: Yunnan Science and Technology Press, 1988: 748-754.
    [26]
    ELITH J, GRAHAM C H, ANDERSON R P, et al. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2006, 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x
    [27]
    WITTMAM M E, BAMES M A, JERDE C L, et al. Confronting species distribution model predictions with species functional traits[J]. Ecology & Evolution, 2016, 6(4): 873-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/ece3.1898
    [28]
    HERKT K M B, BAMIKEL G, SKIDMORE A K, et al. A high-resolution model of bat diversity and endemism for continental Africa[J]. Ecological Modelling, 2016, 320: 9-28. doi: 10.1016/j.ecolmodel.2015.09.009
    [29]
    HEWITT G. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405:907-913. doi: 10.1038/35016000
    [30]
    HILL M P, HOFFMANN A A, MCCOLL S A, et al. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions[J]. Agricultural & Forest Entomology, 2012, 14(2): 127-137. doi: 10.1111/j.1461-9563.2011.00544.x
    [31]
    周天华, 钱增强, 王勇.基于最大熵值模型的山白树适生区分布变化研究[J].西北农林科技大学学报(自然科学版), 2015, 43(9): 51-56. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201509008

    ZHOU T H, QIAN Z Q, WANG Y. Distribution change in suitable area of Sinowilsonia henryi Hemsl. baesd on maximum entyopy model[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(9): 51-56. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201509008
    [32]
    SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240:1285-1293. doi: 10.1126/science.3287615
    [33]
    ADHIKARI D, BARIK S K, UPADHAYA K. Habitat distribution modelling forreintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India[J]. Ecological Engineering, 2012, 40: 37-43. doi: 10.1016/j.ecoleng.2011.12.004
    [34]
    陈书坤, 陈邦余, 李恒.中国植物志[M].北京:科学出版社, 1998: 408-410.

    CHEN S K, CHEN B Y, LI H. Flora of China[M]. Beijing: Science Press, 1998: 408-410.
    [35]
    梁盛业.广西树木志(第3卷)[M].北京:中国林业出版社, 2014: 1469-1471.

    LIANG S Y. Iconographia arbororun guangxi icorum (volume 3)[M]. Beijing: China Forestry Publishing House, 2014: 1469-1471.
    [36]
    CRUTEN P J, MOSIER A R, SMITH K A, et al. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels[M]//PAUL J. Crutzen: a pioneer on atmospheric chemistry and climate change in the Anthropocene. Berlin: Springer International Publishing, 2016: 11191-11205.
    [37]
    李勇, 杨晓光, 张海林, 等.全球气候变暖对中国种植制度可能影响Ⅶ.气候变暖对中国柑桔种植界限及冻害风险影响[J].中国农业科学, 2011, 44(14): 2876-2885. doi: 10.3864/j.issn.0578-1752.2011.14.004

    LI Y, YANG X G, ZHANG H L, et al. The possible effects of global warming on cropping systems in China: Ⅶ. The possible effects of climate warming on geographical shift in safe northern limit of tropical crops and the risk analysis of cold damage in China[J]. Scientia Agricultura Sinica, 2011, 44(14): 2876-2885. doi: 10.3864/j.issn.0578-1752.2011.14.004
    [38]
    盛茂银, 沈初泽, 陈祥, 等.中国濒危野生植物的资源现状与保护对策[J].自然杂志, 2011, 33(3): 149-154. http://d.old.wanfangdata.com.cn/Periodical/zrzz201103005

    SHENG M Y, SHEN C Z, CHEN X, et al. Resourec situation and conservation strategies of endangered wild plant in china[J]. Chinese Journal of Nature, 2011, 33(3):149-154. http://d.old.wanfangdata.com.cn/Periodical/zrzz201103005
    [39]
    ZOU S Q. The vulnerable and endangered plants of Xishuangbanna Prefecture, Yunnan Province, China[J]. Arnoldia, 1988, 48(2):2-8. http://europepmc.org/abstract/AGR/IND88038732
  • Cited by

    Periodical cited type(25)

    1. 成思丽,王丹,贺斌,胡兆柳,陈林,唐军荣,陈诗,许玉兰,蔡年辉. 不同苗龄云南松苗木平茬根系形态特征分析. 浙江农林大学学报. 2024(02): 322-332 .
    2. 蔡年辉,胡兆柳,贺斌,成思丽,陈林,唐军荣,陈诗,许玉兰,李根前. 云南松苗木萌枝能力对截干高度的响应. 西北农林科技大学学报(自然科学版). 2024(04): 85-94 .
    3. 向凌潇,张俊威,李建明. 灌溉量与灌溉频率对番茄根系生长、产量和营养元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(05): 80-92+123 .
    4. 崔远远,张征云,刘鹏,张运春,张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响. 生态环境学报. 2023(01): 158-165 .
    5. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    6. 胡静,张桥英,张运春,崔远远,谭晶华. 水位对若尔盖高原湿地植物群落结构和植物功能性状的影响. 绿色科技. 2023(06): 22-29 .
    7. 石海涛,张大才. 干旱胁迫对高寒草甸不同功能群植物的影响. 林业科技通讯. 2023(08): 48-51 .
    8. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 植物生长调节剂对云南松苗木根系形态的影响. 河南农业大学学报. 2022(03): 381-391 .
    9. 代丽丽,张传生,石研. 黄栌个体生长情况与根系结构的关系探究. 现代园艺. 2022(12): 6-8 .
    10. 张燕,葛江琨,李洪亮,杨晨,戴振芬,陈洪年. 高陡岩质边坡体裂隙率与植物生长速度的关系研究. 安全与环境工程. 2022(04): 93-100 .
    11. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 云南松苗木根系可塑性对平茬高度的响应. 云南大学学报(自然科学版). 2022(06): 1305-1313 .
    12. 杜志敏,向凌云,杜凯敏,杨文玲,王继雯,雷高,郭雪白,郭亮,周静,巩涛,陈国参,甄静. 磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究. 农业环境科学学报. 2021(01): 92-101 .
    13. 贾林巧,陈光水,张礼宏,陈廷廷,姜琦,陈宇辉,范爱连,王雪. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报. 2021(02): 529-537 .
    14. 李宝财,梁文汇,蓝金宣,李军集,杨卓颖,黄晓露. 不同沙土配比基质对岗松幼苗根系形态及营养吸收的影响. 广西林业科学. 2021(02): 157-163 .
    15. 郑诚,温仲明,郭倩,樊勇明,杨玉婷,高飞. 基于MaxEnt模型的延河流域草本植物适生分布与功能性状分析. 生态学报. 2021(17): 6825-6835 .
    16. 李佳佳,魏多,徐翎清,王秋红,马龙彪,刘大丽. 甜菜对低氮胁迫的形态学响应机制. 中国农学通报. 2021(36): 41-46 .
    17. 张祖衔,邓薇,李春,徐洪伟,周晓馥. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响. 北方园艺. 2021(23): 11-20 .
    18. 张岚,张玲卫,刘会良,陈艳锋. 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报. 2020(01): 9-16 .
    19. 李金航,周玫,朱济友,徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报. 2020(03): 65-77 . 本站查看
    20. 李青,祖艳群,王吉秀,杨晶祥,牛秀艳. 铅锌矿区重金属胁迫对野生小花南芥根系特征的影响. 贵州农业科学. 2020(04): 148-152 .
    21. 吴焦焦,张文,高岚,谭星,乐佳兴,田秋玲,冯大兰,黄小辉,齐代华,许一丰,梁洪海,吴铭河,黄诗夏,刘芸. 三峡库区次生黄栌灌木林的群落特征及种间联结性. 生态学报. 2020(12): 4053-4063 .
    22. 李煜,赵国红,尹峰,宁立波. 岩质边坡覆绿植物的根系形态变化特征及影响因子研究. 湖南师范大学自然科学学报. 2020(02): 45-52+81 .
    23. 王效瑾,高巍,赵鹏,于冲冲,刘红恩,聂兆君,秦世玉,李畅. 小麦幼苗根系形态对镉胁迫的响应. 农业环境科学学报. 2019(06): 1218-1225 .
    24. 刘海,韦莉,任永胜,易艳灵,杨倩,李贤伟,范川. 柏木根系分泌物对栾树细根形态及N、P含量的影响. 西北植物学报. 2019(09): 1661-1669 .
    25. 周华健,冯文新,赵国红,尹峰,宁立波,白冰珂. 黄栌在高陡岩质边坡覆绿中的环境适应特征. 湖南师范大学自然科学学报. 2019(05): 60-64+80 .

    Other cited types(18)

Catalog

    Article views (2366) PDF downloads (65) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return