• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002
Citation: ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002

Distributional change in suitable areas for Toona sureni based on MaxEnt model

More Information
  • Received Date: January 03, 2017
  • Revised Date: May 21, 2017
  • Published Date: July 31, 2017
  • Climate change influences biodiversity by altering the habitat of species in ecosystem. Toona sureni is a timber plant with high ecological, economic and medicinal value. It is called "Chinese mahogany" in China with other species in Toona. Understanding the habitat requirements, evaluating habitat quality and predicting the species' potential habitat are significant for protecting T.sureni, as well as for its protection introduction and plantation. Because of the advantages of using presence-only data and performing well with small sample sizes, incomplete data and gaps, MaxEnt model was employed to simulate the habitat suitability distribution, and the area under the receive operating characteristic curve(AUC)was used to examine the model's accuracy, the larger the AUC is, the more accurate the prediction is. So, based on the distribution of T. sureni in Yunnan Province of southwestern China, the MaxEnt model was used to set up its distributional model of potential habitat. The results showed that the mean training AUC and mean test AUC were 0.959 and 0.818, respectively. It is illustrated that the prediction of T.sureni's suitable habitats was reliable. Five variables, namely standard deviation of temperature seasonal change, minimum temperature of the coldest month(℃), mean temperature of the driest quarter(℃), precipitation of the coldest quarter (mm), range of annual temperature were significant factors determining T. sureni 's suitable habitat. Habitat suitability for current and future climate warming(2050s, 2070s) under scenario RCP2.6 in Yunnan Province and China was calculated. The study reports the intuitive and quantitative predictions of climate change on T. sureni species' suitable habitats. The habitat suitability of T.sureni in Yunnan Province and China is predicted to deteriorate with global warming.
  • [1]
    吴征镒.云南植物志(第一卷)[M].北京:科学出版社, 1977: 210-215.

    WU Z Y. Flora of Yunnan (volume 1)[M]. Beijing: Science Press, 1977: 210-215.
    [2]
    彭华, JENNIFER M E.中国植物志(英文), 第11卷[M].北京:科学出版社, 2008: 275-281.

    PENG H, JENNIFER M E. Flora of China (English), volume 11[M]. Beijing: Science Press, 2008: 275-281.
    [3]
    LU A P, JIA H W, XIAO C, et al. Theory of traditional Chinese medicine and therapeutic method of diseases[J]. World Journal of Gastroenterology, 2004, 10(13):1854-1856. doi: 10.3748/wjg.v10.i13.1854
    [4]
    CHEN H, JIN M, WANG Y F, et al. Effect of Toona microcarpa Harms leaf extract on the coagulation system[J]. BioMed Research International, 2014, 13:1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003277905
    [5]
    XIN F, YING T D, HONG P H, et al. Chemical constituents of Toona microcarpa (C. DC.) Harms in Engl. (Meliaceae)[J]. Biochemical Systematics and Ecology, 2010, 38:128-130. doi: 10.1016/j.bse.2009.12.039
    [6]
    周翔宇.中国香椿属的研究[D].南京: 南京林业大学, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y749432

    ZHOU X Y. Studies on the genus Toona of China[D]. Nanjing: Nanjing Forestry University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y749432
    [7]
    鲁正宏.云南香椿属植物的分类研究[D].昆明: 云南大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1586478

    LU Z H. Studies on the classification of the genus Toona in Yunnan[D]. Kunming: Yunnan University, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1586478
    [8]
    傅立国.中国植物红皮书[M].北京:科学出版社, 1992:89.

    FU L G. China rare and endangered plants[M]. Beijing: Science Press, 1992:89.
    [9]
    邹高顺.珍贵速生树种红椿与毛红椿引种栽培研究[J].福建林学院学报, 1994, 14(3):271-276. doi: 10.1161-01.ATV.15.2.228/

    ZOU G S. The study on introduction and cultivation on valuable fast: growing species of Toona ciliata and Toona ciliata var. pubescens [J]. Journal of Fujian College of Forestry, 1994, 14(3): 271-276. doi: 10.1161-01.ATV.15.2.228/
    [10]
    宗世贤, 陶金川, 杨志斌, 等.毛红椿的生态地理分布及其南京引种的初步观察[J].植物生态学报, 1988, 23(3):256-261. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB198803006.htm

    ZONG S X, TAO J C, YANG Z B, et al. Ecogeograpical distribution of Toona ciliate var. pubescens and preliminary observation on its introduction in Nanjing[J]. Journal of Plant Ecology, 1988, 23(3): 256-261. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB198803006.htm
    [11]
    GRINNELL J. Field tests of theories concerning distributional control[J]. American Naturalist, 1917, 51:115-128. doi: 10.1086/279591
    [12]
    STOCKWELL D, PETERS D P. The GARP modelling system: problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information Science, 1999, 13(2):143-158. doi: 10.1080/136588199241391
    [13]
    JONES P G, GUARINO L, JARVIS A. Computer tools for spatial analysis of plant genetic resources data: 2. flora map[J]. Plant Genetic Resources Newsletter, 2002, 130:6-10.
    [14]
    孙文涛, 刘雅婷.生物入侵风险分析的研究进展[J].中国农学通报, 2010, 26(7): 233-236. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201007050

    SUN W T, LIU Y T. Research progress of risk analysis of biological invasion[J]. Chinese Agricultural Science Bulletin, 2010, 26(7): 233-236. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201007050
    [15]
    BOOTH T H, NIX H A, BUSBY J R, et al. Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies[J]. Diversity & Distributions, 2014, 20(1): 1-9. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_806e4778003a94f48671f1a0d3be2600
    [16]
    BONIN G. Signification bioclimatique des pelouses ecorchees sur les montagnes du pourtour mediterraneen, leurs relations avec les forets D'Altitude[J]. Bulletin De La Société Botanique De France, 2014, 118(Suppl. 2):17-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00378941.1971.10838983
    [17]
    KHORMI H M, KUMAR L. Climate change and the potential global distribution of aedes aegypti: spatial modelling using GIS and CLIMEX[J]. Geospatial Health, 2014, 8(2): 405-415. doi: 10.4081/gh.2014.29
    [18]
    SHABANI F, KUMAR L. Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera [J]. Plos One, 2014, 9(4):948-967. https://www.ncbi.nlm.nih.gov/pubmed/24722140
    [19]
    PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231-259. doi: 10.1016/j.ecolmodel.2005.03.026
    [20]
    ZHU G P, LIU C, MIN L I, et al. Potential geographical distribution of Sinoxylon japonicum (Coleoptera: Bostrichidae) in China based on MaxEnt and GARP models[J]. Acta Entomologica Sinica, 2014, 57(5):581-586. http://d.old.wanfangdata.com.cn/Periodical/kcxb201405010
    [21]
    PLASTINO A, ROCCA M C, PENNINI F. Troublesome aspects of the Renyi-MaxEnt treatment[J/OL]. Physical Review B, 2016, 94(1): 012145. doi: 10.1103/PhysRevE.94.012145.https://doi.org/10.1103/PhysRevE.94.012145.
    [22]
    KUMAR S, YEE W L, NEVEN L G. Mapping global potential risk of establishment of Rhagoletis pomonella (Diptera: Tephritidae) using MaxEnt and CLIMEX niche models[J]. Journal of Economic Entomology, 2016, 109(5): 166-177. https://www.ncbi.nlm.nih.gov/pubmed/27452001
    [23]
    GUISAN A, GRAHAM C H, ELITH J, et al. The NCEAS species distribution modelling group sensitivity of predictive species distribution models to change in grain size[J]. Diversity Distribution, 2007, 13(3): 332-340. doi: 10.1111/j.1472-4642.2007.00342.x
    [24]
    YI Y J, CHENG X, YANG Z F, et al. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia, Lour) in Yunnan, China[J]. Ecological Engineering, 2016, 92:260-269. doi: 10.1016/j.ecoleng.2016.04.010
    [25]
    徐永椿.云南树木图志(上册)[M].昆明:云南科技出版社, 1988: 748-754.

    XU Y C. Iconographia arbororun yunnanicorum(Rudin)[M]. Kuming: Yunnan Science and Technology Press, 1988: 748-754.
    [26]
    ELITH J, GRAHAM C H, ANDERSON R P, et al. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2006, 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x
    [27]
    WITTMAM M E, BAMES M A, JERDE C L, et al. Confronting species distribution model predictions with species functional traits[J]. Ecology & Evolution, 2016, 6(4): 873-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/ece3.1898
    [28]
    HERKT K M B, BAMIKEL G, SKIDMORE A K, et al. A high-resolution model of bat diversity and endemism for continental Africa[J]. Ecological Modelling, 2016, 320: 9-28. doi: 10.1016/j.ecolmodel.2015.09.009
    [29]
    HEWITT G. The genetic legacy of the Quaternary ice ages[J]. Nature, 2000, 405:907-913. doi: 10.1038/35016000
    [30]
    HILL M P, HOFFMANN A A, MCCOLL S A, et al. Distribution of cryptic blue oat mite species in Australia: current and future climate conditions[J]. Agricultural & Forest Entomology, 2012, 14(2): 127-137. doi: 10.1111/j.1461-9563.2011.00544.x
    [31]
    周天华, 钱增强, 王勇.基于最大熵值模型的山白树适生区分布变化研究[J].西北农林科技大学学报(自然科学版), 2015, 43(9): 51-56. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201509008

    ZHOU T H, QIAN Z Q, WANG Y. Distribution change in suitable area of Sinowilsonia henryi Hemsl. baesd on maximum entyopy model[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(9): 51-56. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201509008
    [32]
    SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240:1285-1293. doi: 10.1126/science.3287615
    [33]
    ADHIKARI D, BARIK S K, UPADHAYA K. Habitat distribution modelling forreintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India[J]. Ecological Engineering, 2012, 40: 37-43. doi: 10.1016/j.ecoleng.2011.12.004
    [34]
    陈书坤, 陈邦余, 李恒.中国植物志[M].北京:科学出版社, 1998: 408-410.

    CHEN S K, CHEN B Y, LI H. Flora of China[M]. Beijing: Science Press, 1998: 408-410.
    [35]
    梁盛业.广西树木志(第3卷)[M].北京:中国林业出版社, 2014: 1469-1471.

    LIANG S Y. Iconographia arbororun guangxi icorum (volume 3)[M]. Beijing: China Forestry Publishing House, 2014: 1469-1471.
    [36]
    CRUTEN P J, MOSIER A R, SMITH K A, et al. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels[M]//PAUL J. Crutzen: a pioneer on atmospheric chemistry and climate change in the Anthropocene. Berlin: Springer International Publishing, 2016: 11191-11205.
    [37]
    李勇, 杨晓光, 张海林, 等.全球气候变暖对中国种植制度可能影响Ⅶ.气候变暖对中国柑桔种植界限及冻害风险影响[J].中国农业科学, 2011, 44(14): 2876-2885. doi: 10.3864/j.issn.0578-1752.2011.14.004

    LI Y, YANG X G, ZHANG H L, et al. The possible effects of global warming on cropping systems in China: Ⅶ. The possible effects of climate warming on geographical shift in safe northern limit of tropical crops and the risk analysis of cold damage in China[J]. Scientia Agricultura Sinica, 2011, 44(14): 2876-2885. doi: 10.3864/j.issn.0578-1752.2011.14.004
    [38]
    盛茂银, 沈初泽, 陈祥, 等.中国濒危野生植物的资源现状与保护对策[J].自然杂志, 2011, 33(3): 149-154. http://d.old.wanfangdata.com.cn/Periodical/zrzz201103005

    SHENG M Y, SHEN C Z, CHEN X, et al. Resourec situation and conservation strategies of endangered wild plant in china[J]. Chinese Journal of Nature, 2011, 33(3):149-154. http://d.old.wanfangdata.com.cn/Periodical/zrzz201103005
    [39]
    ZOU S Q. The vulnerable and endangered plants of Xishuangbanna Prefecture, Yunnan Province, China[J]. Arnoldia, 1988, 48(2):2-8. http://europepmc.org/abstract/AGR/IND88038732
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(7)

    1. 张鑫,张丹,代鹏飞,张广森,宋玫. 气候变化下反枝苋潜在中国适生区及生态位研究. 草地学报. 2024(10): 3280-3288 .
    2. 陈禹衡,陆家祎,吴鹏飞,毛岭峰. 基于气候与物种扩散的破坏草入侵区域对未来气候变化的响应. 北京林业大学学报. 2022(01): 69-76 . 本站查看
    3. 刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 . 本站查看
    4. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    5. 张明珠,叶兴状,李佳慧,刘益鹏,陈世品,刘宝. 气候变化情景下长序榆在中国的潜在适生区预测. 生态学杂志. 2021(12): 3822-3835 .
    6. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    7. 塞依丁·海米提,努尔巴依·阿布都沙力克,迈迪娜·吐尔逊,阿尔曼·解思斯,阿腾古丽. 外来入侵植物意大利苍耳在新疆的潜在分布及扩散趋势. 江苏农业科学. 2019(13): 126-130 .

    Other cited types(3)

Catalog

    Article views (2365) PDF downloads (64) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return