• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HUANG Di, SUN Ming, YUAN Cun-quan, CHENG Tang-ren, WANG Jia, ZHANG Qi-xiang. Isolation and functional analysis of CYC2d orthologous genes from several plants of the tribe Anthemideae[J]. Journal of Beijing Forestry University, 2017, 39(4): 63-71. DOI: 10.13332/j.1000-1522.20170003
Citation: HUANG Di, SUN Ming, YUAN Cun-quan, CHENG Tang-ren, WANG Jia, ZHANG Qi-xiang. Isolation and functional analysis of CYC2d orthologous genes from several plants of the tribe Anthemideae[J]. Journal of Beijing Forestry University, 2017, 39(4): 63-71. DOI: 10.13332/j.1000-1522.20170003

Isolation and functional analysis of CYC2d orthologous genes from several plants of the tribe Anthemideae

More Information
  • Received Date: January 03, 2017
  • Revised Date: February 28, 2017
  • Published Date: March 31, 2017
  • As the important gene of regulating flower symmetry, cyc-like proteins have been shown to mainly regulate the identity and development of ray floret (bilaterally symmetrical) in Asteraceae. The presence or absence of ray floret in Asteraceae and its molecular regulation mechanism as well as the evolutionary process have been highly concerned. Orthologous genes of CYC2d from Ajania potaninii, Brachanthemum titovii and Chrysanthemum indicum var. aromaticum were obtained by homology-based cloning. Their sequence alignment and conserved motif analysis were performed with the amino sequence of CmCYC2d, respectively. The results showed that their homology was more than 90% and all these proteins contained the conserved TCP and R domains. Furthermore, according to the result of semi-quantitative RT-PCR assay, CYC2d was strongly expressed in the young inflorescence of the groundcover chrysanthemum 'Mao xiangyu', while slightly expressed in that of A.potaninii and B.titovii. Therefore, the transcription levels of CmCYC2d were examined in ray and disc florets of 'Mao xiangyu' at six developing stages using quantitative real-time PCR. The results indicated that it was weakly expressed in disc florets of all stages, while highly expressed in ray florets of the corresponding stages. Moreover, in three F1 progenies with various whorls of ray florets, the CmCYC2d was expressed at much higher levels in ray florets of different whorls than in disc florets. The recombinant plasmid pSUPER1300-CmCYC2d-GFP was transiently expressed into the epidermal cells of Nicotiana benthamiana by agrobacterium-mediated transformation, and subcellular localization analysis revealed that the CmCYC2d protein mainly localized into the nucleus of epidermal cells. Furthermore, CmCYC2d was overexpressed in wild type Arabidopsis and the TCP1 mutant used the floral-dip method. The results showed that the vegetative growth and the flowering time of the positive transgenic lines were repressed and postponed. Moreover, the size and arrangement of the petals seemed to be changed, making the petal arrangement showed bilateral symmetry from original radial symmetry. These results indicate that the transcription factor CmCYC2d is essential in regulating ray floret identity in chrysanthemum. Our study lays a foundation for the research of molecular mechanisms for the evolutionary process of ray floret in Asteraceae.
  • [1]
    GUSTAFSSON Å. Linnaeus' Peloria: the history of a monster[J]. Theoretical and Applied Genetics, 1979, 54(6): 241-248. doi: 10.1007/BF00281206
    [2]
    LUO D, CARPENTER R, COPSEY L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(1): 367-376. doi: 10.1016-S0092-8674(00)81523-8/
    [3]
    LUO D, CARPENTER R, VINCENT C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383: 794-799. doi: 10.1038/383794a0
    [4]
    CUBAS P, VINCENT C, COEN E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401: 157-161. doi: 10.1038/43657
    [5]
    CUBAS P, LAUTER N, DOEBLEY J, et al. The TCP domain: a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2): 215-222. doi: 10.1046/j.1365-313X.1999.00444.x
    [6]
    GAO Q, TAO J H, YAN D, et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae)[J]. Development Genes and Evolution, 2008, 218(7): 341-351. doi: 10.1007/s00427-008-0227-y
    [7]
    YANG X, PANG H B, LIU B L, et al. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy[J]. The Plant Cell, 2012, 24(5): 1834-1847. doi: 10.1105/tpc.112.099457
    [8]
    FENG X, ZHAO Z, TIAN Z, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 4970-4975. doi: 10.1073/pnas.0600681103
    [9]
    REARDON W, GALLAGHER P, NOLAN K M, et al. Different outcomes for the MYB floral symmetry genes DIVARICATA and RADIALIS during the evolution of derived actinomorphy in Plantago[J]. The New Phytologist, 2014, 202(2): 716-725. doi: 10.1111/nph.12682
    [10]
    KIM M, CUI M L, CUBAS P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322: 1116-1119. doi: 10.1126/science.1164371
    [11]
    CHAPMAN M A, LEEBENS-MACK J H, BURKE J M. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Molecular Biology and Evolution, 2008, 25(7): 1260-1273. doi: 10.1093/molbev/msn001
    [12]
    BROHOLM S K, TAHTIHARJU S, LAITINEN R A, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(26): 9117-9122. doi: 10.1073/pnas.0801359105
    [13]
    CHAPMAN M A, TANG S, DRAEGER D, et al. Genetic analysis of floral symmetry in Van Gogh's sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae[J/OL]. PLoS Genet, 2012, 8(3): e1002628[2016-09-16]. http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002628.
    [14]
    FAMBRINI M, SALVINI M, BASILE A, et al. Transposon-dependent induction of Vincent van Gogh's sunflowers: exceptions revealed[J]. Genesis, 2014, 52(4): 315-327. doi: 10.1002/dvg.22743
    [15]
    JUNTHEIKKI-PALOVAARA I, TÄHTIHARJU S, LAN T, et al. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae)[J]. The Plant Journal, 2014, 79(5): 783-796. doi: 10.1111/tpj.12583
    [16]
    GARC S H M P, SPENCER V M R, KIM M. Control of floret symmetry by RAY3, SvDIV1B and SvRAD in the capitulum of Senecio vulgaris [J/OL]. Plant Physiology, 2016, 10[2016-09-16]. http://www.plantphysiol.org/content/early/2016/05/12/pp.16.00395.abstract.
    [17]
    HELARIUTTA Y, ELOMAA P, KOTILAINEN M, et al. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. regina (Compositae)[J]. Plant Molecular Biology, 1993, 22(1): 183-193.
    [18]
    MANASSERO N G, VIOLA I L, WELCHEN E, et al. TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111-127. https://www.ncbi.nlm.nih.gov/pubmed/25436570
    [19]
    TAHTIHARJU S, RIJPKEMA A S, VETTERLI A, et al. Evolution and diversification of the CYC/TB1 gene family in Asteraceae: a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae)[J]. Molecular Biology and Evolution, 2012, 29(4): 1155-1166. doi: 10.1093/molbev/msr283
    [20]
    HUANG D, LI X, SUN M, et al. Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium [J]. Frontiers in Plant Science, 2016, 7[2016-09-16]. http://journal.frontiersin.org/article/10.3389/fpls.2016.01633.
    [21]
    CITERNE H L, PENNINGTON R T, CRONK Q C. An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 12017-12020. doi: 10.1073/pnas.0600986103
    [22]
    TAKEDA T, SUWA Y, SUZUKI M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3): 513-520. doi: 10.1046/j.1365-313X.2003.01648.x
    [23]
    AGUILAR-MARTNEZ J A, POZA-CARRI N C, CUBAS P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant cell, 2007, 19(2): 458-472. doi: 10.1105/tpc.106.048934
    [24]
    COSTA M M, FOX S, HANNA A I, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005, 132(22): 5093-5101. doi: 10.1242/dev.02085
    [25]
    HILEMAN L C. Bilateral flower symmetry: how, when and why?[J]. Current Opinion in Plant Biology, 2014, 17(3): 146-152. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232220132/
    [26]
    ALMEIDA J, ROCHETA M, GALEGO L. Genetic control of flower shape in Antirrhinum majus [J]. Development, 1997, 124(7): 1387-1392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000005683084
  • Related Articles

    [1]Li Yang, Zhang Jianjun, Yu Yang, Hu Yawei, Zhao Yuhui, Ma Xinyi. Experimental study on the variation characteristics of runoff sediment concentration with slope length in the loess region of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 148-155. DOI: 10.12171/j.1000-1522.20220454
    [2]Wang Hengxing, Zhang Jianjun, Sun Ruoxiu, Zhang Jianan. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85-95. DOI: 10.12171/j.1000-1522.20190231
    [3]Wen Wenjie, Zhang Jianjun, Li Yixuan, Huang Xiaoqing, He Pei. A simple method for estimating runoff sediment concentration[J]. Journal of Beijing Forestry University, 2019, 41(11): 155-162. DOI: 10.13332/j.1000-1522.20180246
    [4]Zhang Shuai, Ding Guo-dong, Gao Guang-lei, Zhao Yuan-yuan, Yu Ming-han, Bao Yan-feng, Wang Chun-yuan. Study on new highway guardrail for anti-sediment in sand area[J]. Journal of Beijing Forestry University, 2018, 40(2): 90-97. DOI: 10.13332/j.1000-1522.20170353
    [5]AI Ning, WEI Tian-xing, ZHU Qing-ke, GEGENBATU, QIN Wei, ZHAO Xing-kai, ZHAO Wei-jun, MA Huan, YANG Yuan-jun. Factors affecting slope runoff and sediment yield in northern Shaanxi Province based on path analysis[J]. Journal of Beijing Forestry University, 2015, 37(6): 77-84. DOI: 10.13332/j.1000-1522.20140428
    [6]ZHU Yao-jun, GUO Ju-lan, WU Gao-jie, LIN Guang-xuan, WU Xiao-dong. Spatial distribution of physicochemical properties and metal concentration in mangrove sediments from Gaoqiao in Zhanjiang, Guangdong of Southern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 1-9.
    [7]WANG Jian-xun, , ZHENG Fen-li, JIANG Zhong-shan, ZHANG Xun-chang. Hillslope soil erosion prediction based on WEPP model under different slope lengths in hillygully region of the loess area[J]. Journal of Beijing Forestry University, 2008, 30(2): 151-156.
    [8]ZHANG Xiao-ming, YU Xin-xiao, WU Si-hong, WANG Yun-qi, ZHANG Man-liang. Effects of landuse-landcover change on sediment production of runoff in typical watershed in the loess gully-hilly region of China[J]. Journal of Beijing Forestry University, 2007, 29(6): 115-122. DOI: 10.13332/j.1000-1522.2007.06.033
    [9]WU Shu-fang, WU Pu-te, FENG Hao, LI Min. Effects of forage grass on the reduction of runoff and sediment and the hydrodynamic characteristic mechanism of slope runoff in the standard slope plot[J]. Journal of Beijing Forestry University, 2007, 29(3): 99-104. DOI: 10.13332/j.1000-1522.2007.03.016
    [10]ZHANG Jian-jun, NA Lei, FANG Jia-qiang. Manning roughness of sloping ground in the loess area of west Shanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 108-113. DOI: 10.13332/j.1000-1522.2007.01.019
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (2492) PDF downloads (41) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return