• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. DOI: 10.13332/j.1000-1522.20170040
Citation: WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. DOI: 10.13332/j.1000-1522.20170040

Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment

More Information
  • Received Date: February 19, 2017
  • Revised Date: March 19, 2017
  • Published Date: May 31, 2017
  • Morphological plasticity is closely related to the ability of plant growth and resource utilization, which is an important manifestation of plant survival strategy in specific environment. To study the relationship between root morphological plasticity and ecological strategies of the plant is significant to understand the mechanism of plant adaptation to the environment. With 1-year-old Cotinus coggygria seedlings as the study materials, this paper applies the pot experiment in greenhouse and sets up five different levels of nutrient supply to analyze the root morphology characteristics (root length, surface area, root tissue density, root fineness, root branching density, etc.) and different diameters of root morphology (root length, root surface area, root volume, root tips) to study the changes of morphological and functional plasticity in the plant seedlings. The results indicated that different levels of nutrient supply showed significant (P < 0.01) interaction on root length, surface area, root tips, root forks, root tissue density, average root diameter and root fineness of the plant seedlings. In the pure sand environment, the seedlings were most closely related to the root length, root surface area and root fineness. In the environment with limited nutrient restriction, the seedlings were mainly changed by root length, root surface area, root number and branch. However, the relationship between root tip density, root branch density, root diameter and root volume was most closely related in the relatively light and medium environment. In the whole soil environment, the seedlings were mainly affected by the change of root tissue density. To a certain extent, limited nutrient supply can stimulate ≤1.0 mm diameter fine roots and limit >1.0 mm diameter fine roots. Morphological and functional plasticity in the plant seedlings reflected that the levels of nutrient supply significantly changed the strategies of nutrient absorption of Cotinus coggygria seedlings. From nutrient-sufficient to nutrient-limited and nutrient-deficient condition, seedlings tend to change their ecological strategies from enhancing the utilization ability in situ, enhancing the absorption ability in situ and expanding the absorption range, improving the storage and transportation ability, and finally change to the endurance strategies.
  • [1]
    FORTUNEL C, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species [J]. Functional Ecology, 2012, 26(5):1153 - 1161. doi: 10.1111/j.1365-2435.2012.02020.x
    [2]
    陈莹婷, 许振柱.植物叶经济谱的研究进展[J].植物生态学报, 2014, 38(10): 1135 - 1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012

    CHEN Y T, XU Z Z. Review on research of leaf economics spectrum [J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135 - 1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
    [3]
    MOONEY K A, HALITSCHKE R, KESSLER A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades [J]. Science, 2010, 327:1642 - 1644. doi: 10.1126/science.1184814
    [4]
    MALAMY J E. Intrinsic and environmental response pathways that regulate root system architecture [J]. Plant Cell & Environment, 2005, 28(1):67 - 77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-3040.2005.01306.x
    [5]
    ROGERS E D, BENFEY P N. Regulation of plant root system architecture: implications for crop advancement [J]. Current Opinion in Biotechnology, 2015, 32:93 - 98. doi: 10.1016/j.copbio.2014.11.015
    [6]
    BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants [J]. Advances in Genetics, 1965, 13(1): 115 - 155. doi: 10.1016-S0065-2660(08)60048-6/
    [7]
    HODGE A. Plastic plants and patchy soils [J]. Journal of Experimental Botany, 2006, 57(2): 401 - 411. doi: 10.1093/jxb/eri280
    [8]
    RISTOVA D, BUSCH W. Natural variation of root traits: from development to nutrient uptake [J]. Plant Physiology, 2014, 166(2): 518 - 527. doi: 10.1104/pp.114.244749
    [9]
    GROSSMAN J D, RICE K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration [J]. Evolutionary Applications, 2012, 5(5):850 - 857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1752-4571.2012.00263.x
    [10]
    PACHECOVILLALOBOS D, HARDTKE C S. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2012, 367:1552 - 1558. doi: 10.1098/rstb.2011.0237
    [11]
    郭京衡, 曾凡江, 李尝君, 等.塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J].植物生态学报, 2014, 38(1):36 - 44. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201401004

    GUO J H, ZENG F J, LI C J, et al. Root architecture and ecological adaptation strategies in three shecterbelt plant species in the southern Taklimakan Desert[J]. Journal of Plant Ecology, 2014, 38(1):36 - 44. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201401004
    [12]
    倪薇, 霍常富, 王朋.落叶松(Larix)细根形态特征沿纬度梯度的可塑性[J].生态学杂志, 2014, 33(9): 2322 - 2329. http://d.old.wanfangdata.com.cn/Periodical/stxzz201409006

    NI W, HUO C F, WANG P. Morphological plasticity of fine root traits in Larix plantations across a latitude gradient [J]. Chinese Journal of Ecology, 2014, 33(9): 2322 - 2329. http://d.old.wanfangdata.com.cn/Periodical/stxzz201409006
    [13]
    宋清华, 赵成章, 史元春, 等.不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J].植物生态学报, 2015, 39(6): 577 - 585. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506004

    SONG Q H, ZHAO C Z, SHI Y C, et al. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes [J]. Chinese Journal of Plant Ecology, 2015, 39(6): 577 - 585. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506004
    [14]
    KASHIWAGI J, KRISHNAMURTHY L, UPADHYAYA H D, et al. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.) [J]. Euphytica, 2005, 146(3): 213 - 222. doi: 10.1007/s10681-005-9007-1
    [15]
    ABENAVOLI M R, LEONE M, SUNSERI F, et al. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy) [J]. Journal of Agronomy & Crop Science, 2015, 202(1):1 - 12. doi: 10.1111/jac.12124
    [16]
    GIEHL R F, VON W N. Root nutrient foraging [J]. Plant Physiology, 2014, 166(2):509 - 517. doi: 10.1104/pp.114.245225
    [17]
    ZÚÑIGA-FEEST A, DELGADO M, BUSTOS-SALAZAR A, et al. The southern south American Proteacease, Embothrium coccineum exhibits intraspecies variation in growth and cluster-root formation depending on climatic and edaphic origins [J]. Plant Soil, 2015, 396(1): 201 - 213. http://connection.ebscohost.com/c/articles/111969248/southern-south-american-proteaceae-embothrium-coccineum-exhibits-intraspecific-variation-growth-cluster-root-formation-depending-climatic-edaphic-origins
    [18]
    BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006, 57(1): 233 - 66. doi: 10.1146/annurev.arplant.57.032905.105159
    [19]
    KOEVOETS I T, VENEMA J H, ELZENGA J T M, et al. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance [J]. Frontiers in Plant Science, 2016, 7:1335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005332/
    [20]
    陈书文, 李娟娟, 雷新彦, 等.观赏植物黄栌快繁技术研究[J].西北农林科技大学学报(自然科学版), 2005, 33(9):117 - 120. doi: 10.3321/j.issn:1671-9387.2005.09.025

    CHEN S W, LI J J, LEI X Y, et al. Study on rapid propagateion technic for ornamental of Cotinus coggygria [J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(9):117 - 120. doi: 10.3321/j.issn:1671-9387.2005.09.025
    [21]
    李海龙, 李端亮.黄栌属植物研究进展[J].陕西林业科技, 2009(6):22 - 27. http://d.old.wanfangdata.com.cn/Conference/7454367

    LI H L, LI D L. Advances in studies on genus Cotinus (Tourn.) Mill[J]. Shaanxi Forest Science and Technology, 2009(6):22 - 27. http://d.old.wanfangdata.com.cn/Conference/7454367
    [22]
    李红云, 李焕平, 杨吉华, 等. 4种灌木林地土壤物理性状及抗侵蚀性能的研究[J].水土保持学报, 2006, 20(3):13 - 16. doi: 10.3321/j.issn:1009-2242.2006.03.004

    LI H Y, LI H P, YANG J H, et al. Study on soil physical properties and anti-erosion capability under four kinds of shrubbery [J]. Journal of Soil and Water Conservation, 2006, 20(3):13 - 16. doi: 10.3321/j.issn:1009-2242.2006.03.004
    [23]
    韩婧.香山黄栌枯萎病防治初步研究[D].北京: 北京林业大学, 2009. http: //cdmd.cnki.com.cn/article/cdmd-10022-2009161538.htm

    HAN J. Preliminary study on the control of Cotinus coggygria verticillium wilt in fragrant hill [D]. Beijing: Beijing Forestry University, 2009. http: //cdmd.cnki.com.cn/article/cdmd-10022-2009161538.htm
    [24]
    鲍绍文.黄栌与大丽轮枝菌互作的病理学机制研究[D].北京: 北京林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129242.htm

    BAO S W. Pathological mechanism of interaction between Cotinus coggygria and Verticillium dahliae [D]. Beijing: Beijing Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129242.htm
    [25]
    PACHOLCZAK A, SZYDŁO W, ŁUKASZEWSKA A. The effect of etiolation and shading of stock plants on rhizogenesis in stem cuttings of Cotinus coggygria [J]. Acta Physiologiae Plantarum, 2005, 27(4):417 - 428. doi: 10.1007/s11738-005-0046-y
    [26]
    METIVIER P S R, YEUNG E C, PATEL K R, et al. In vitro rooting of microshoots of Cotinus coggygria Mill, a woody ornamental plant [J]. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(2):119 - 123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7957f711bd30c7ed6c9bdbb082068bb6
    [27]
    VALIANOU L, KARAPANAGIOTIS I, CHRYSSOULAKIS Y. Erratum to: comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography [J]. Analytical and Bioanalytical Chemistry, 2009, 395(7):2175 - 2189. doi: 10.1007/s00216-009-3137-6
    [28]
    MANTZOURIS D, KARAPANAGIOTIS I, VALIANOU L, et al. HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos [J]. Analytical and Bioanalytical Chemistry, 2011, 399(9):3065 - 3079. doi: 10.1007/s00216-011-4665-4
    [29]
    MATIC S, STANIC S, BOGOJEVIC D, et al. Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo [J]. Genetics & Molecular Biology, 2011, 34(2):298 - 303. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3115326
    [30]
    刘刚, 张光灿, 刘霞.土壤干旱胁迫对黄栌叶片光合作用的影响[J].应用生态学报, 2010, 21(7):1697 - 1701. http://d.old.wanfangdata.com.cn/Periodical/yystxb201007011

    LIU G, ZHANG G C, LIU X. Responses of Cotinus coggygria var. cinerea photosynthesis to soil drought stress [J]. Chinese Journal of Applied Ecology, 2010, 21(7):1697 - 1701. http://d.old.wanfangdata.com.cn/Periodical/yystxb201007011
    [31]
    葛雨萱, 赵阳, 甘长青, 等.不同光环境对黄栌光合特性及生长势和叶色的影响[J].中国农学通报, 2011, 27(19):19 - 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201119005

    GE Y X, ZHAO Y, GAN C Q, et al. The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop. [J]. Chinese Agricultural Science Bulletin, 2011, 27(19):19 - 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201119005
    [32]
    李金航, 齐秀慧, 徐程扬, 等.黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J].林业科学, 2015, 51(1):29 - 41. http://d.old.wanfangdata.com.cn/Periodical/lykx201501004

    LI J H, QI X H, XU C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings [J]. Scientia Silvae Sinicae, 2015, 51(1):29 - 41. http://d.old.wanfangdata.com.cn/Periodical/lykx201501004
    [33]
    李金航, 齐秀慧, 徐程扬, 等.华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J].北京林业大学学报, 2014, 36(1):48 - 54. http://j.bjfu.edu.cn/article/id/9958

    LI J H, QI X H, XU C Y, et al. Short-term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China [J]. Journal of Beijing Forestry University, 2014, 36(1):48 - 54. http://j.bjfu.edu.cn/article/id/9958
    [34]
    PAEZGARCIA A, MOTES C M, SCHEIBLE W R, et al. Root traits and phenotyping strategies for plant improvement [J]. Plants, 2015, 4(2): 334 - 355. doi: 10.3390/plants4020334
    [35]
    MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3):505 - 518. doi: 10.1111/nph.13363
    [36]
    HOYOS-VILLEGAS V, WRIGHT E M, KELLY J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel [J]. Crop Science, 2016, 56(3): 1081 - 1094. doi: 10.2135/cropsci2015.10.0609
    [37]
    YAN W, RAJCAN I. Biplot analysis of test sites and trait relations of soybean in Ontario [J]. Crop Science, 2002, 42(1): 11 - 20. doi: 10.2135/cropsci2002.1100
    [38]
    PLAZA-BONILLA D, ÁLVARO-FUENTES J, ARRÚE J L, et al. Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area [J]. Agriculture Ecosystems & Environment, 2014, 189(2):43 - 52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff7e8d16ac11d36bfb0b590967448a45
    [39]
    DANNOWSKI M, BLOCK A. Fractal geometry and root system structures of heterogeneous plant communities [J]. Plant and Soil, 2005, 272(1): 61 - 76. doi: 10.1007-s11104-004-3981-2/
    [40]
    LIU J, WANG B, ZHANG Y, et al. Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis [J]. Plant Growth Regulation, 2014, 74(2):187 - 192. doi: 10.1007/s10725-014-9910-3
    [41]
    FITTER A H, STICKLAND T R, HARVEY M L, et al. Architectural analysis of plant root systems (1): architectural correlates of exploitation efficiency [J]. New Phytologist, 1991, 118(3):375 - 382. doi: 10.1111/j.1469-8137.1991.tb00018.x
    [42]
    GUSWA A J. Effect of plant uptake strategy on the water-optimal root depth [J]. Water Resources Research, 2010, 46(9): 4921 - 4926. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=213f802522b28b7c6ad0a7cc1aab6031
    [43]
    COMAS L H, BECKER S R, VON CRUZ M V, et al. Root traits contributing to plant productivity under drought [J/OL]. Frontiers in Plant Science, 2013, 4(4): 442[2017-01-06]. doi: 10.3389/fpls.2013.00442.
    [44]
    HENKE M, SARLIKIOTI V, KURTH W, et al. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model [J]. Plant Soil, 2014, 385(1): 49 - 62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9be1de23b672422ab387c9e36c48971e
    [45]
    CAMPBELL B D, GRIME J P, MACKEY J M L. A trade-off between scale and precision in resource foraging [J]. Oecologia, 1991, 87(4): 532 - 538. doi: 10.1007/BF00320417
    [46]
    POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control [J]. New Phytologist, 2012, 193(1): 30 - 50. doi: 10.1111/j.1469-8137.2011.03952.x
    [47]
    EISSENSTAT D M. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks [J]. New Phytologist, 1991, 118(1): 63 - 68. doi: 10.1111/j.1469-8137.1991.tb00565.x
    [48]
    EISSENSTAT D M, WELLS C E, YANAI R D, et al. Building roots in a changing environment: implications for root longevity [J]. New Phytologist, 2000, 147(1): 33 - 42. doi: 10.1046/j.1469-8137.2000.00686.x
    [49]
    GRUBER B D, GIEHL R F H, FRIEDEL S, et al. Plasticity of the arabidopsis root system under nutrient deficiencies [J]. Plant Physiology, 2013, 163(1): 161 - 179. doi: 10.1104/pp.113.218453
    [50]
    KROUK G, LACOMBE B, BIELACH A, et al. Nitrate regulated auxin transport by NRT 1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell, 2010, 18(6): 927 - 937. doi: 10.1016/j.devcel.2010.05.008
    [51]
    BIROUSTE M, ZAMORA-LEDEZMA E, BOSSARD C, et al. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content [J]. Plant Soil, 2014, 374(1): 299 - 313. doi: 10.1007/s11104-013-1874-y
    [52]
    REWALD B, RECHENMACHER A, GODBOLD D L. It's complicated: intraroot system variability of respiration and morphological traits in four deciduous tree species [J]. Plant Physiology, 2014, 166(2): 736 - 745. doi: 10.1104/pp.114.240267
    [53]
    HUMMEL I, VILE D, VIOLLE C, et al. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species [J]. The New phytologist, 2007, 173(2): 313 - 321. doi: 10.1111/j.1469-8137.2006.01912.x
    [54]
    MCCORMACK M L, GUO D. Impacts of environmental factors on fine root lifespan [J]. Frontiers in Plant Science, 2014, 5(5):205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618506
    [55]
    梅莉, 王政权, 程云环, 等.林木细根寿命及其影响因子研究进展[J].植物生态学报, 2004, 28(4): 704 - 710. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200405017

    MEI L, WANG Z Q, CHENG Y H, et al. A review: factors influencing fine root longevity in forest ecosystems [J]. Chinese Journal of Plant Ecology, 2004, 28(4): 704 - 710. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200405017
    [56]
    HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1):9 - 24. doi: 10.1111/j.1469-8137.2004.01015.x
    [57]
    FITTER A H, STICKLABD T R. Architectural analysis of plant root systems 2: influence of nutrient supply on architecture in contrasting plant species [J]. New Phytologist, 1991, 118(3): 383 - 389. doi: 10.1111/j.1469-8137.1991.tb00019.x
    [58]
    PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72(2): 293 - 309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;
    [59]
    WEI H X, XU C Y, MA L Y, et al. Effect of late-season fertilization on nutrient reserves and carbohydrate accumulation in bareroot Larix olgensis seedlings [J]. Journal of Plant Nutrition, 2014, 37(2): 279 - 293. doi: 10.1080/01904167.2013.859697
    [60]
    SENOCK R S, LEUSCHNER C. Axial water flux dynamics in small diameter roots of a fast growing tropical tree [J]. Plant and Soil, 1999, 208(1): 57 - 71. doi: 10.1023/A:1004494432610
    [61]
    张晶, 沈应柏, 徐程扬.树木根系呼吸及其对环境的反应研究进展[J].东北林业大学学报, 2007, 35(2):78 - 81. doi: 10.3969/j.issn.1000-5382.2007.02.030

    ZHANG J, SHEN Y B, XU C Y. Review's on root respiration and it responses to environment changes [J]. Journal of Northeast Forestry University, 2007, 35(2):78 - 81. doi: 10.3969/j.issn.1000-5382.2007.02.030
    [62]
    WANG G L, XUE S, LIU F, et al. Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum [J/OL]. Plant Soil, 2017[2017-02-25].10.1007/s11104-016-3160-2
  • Related Articles

    [1]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [2]Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. DOI: 10.12171/j.1000-1522.20200065
    [3]Liu Xiaotong, Li Haikui, Cao Lei, Zhang Yiru. Analysis on the heterogeneity of forest soil nutrients in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 90-101. DOI: 10.12171/j.1000-1522.20200164
    [4]Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. DOI: 10.12171/j.1000-1522.20190218
    [5]Wang Aibin, Zhang Liuyang, Song Huifang, Zhang Ming, Miao Yahui, Guo Yuxiao, Zhang Lingyun. Effects of P fertilization methods on growth and nutrient uptake of Vaccinium spp. seedlings[J]. Journal of Beijing Forestry University, 2020, 42(2): 114-123. DOI: 10.12171/j.1000-1522.20190235
    [6]Ma Pu, Tao Meng, Lü Shihai, Su Derong, Ye Shengxing, Diao Zhaoyan. Estimation models of leaf biomass and nutrient content for Caragana korshinskii in Kubuqi Sandy Land of northern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 33-41. DOI: 10.13332/j.1000-1522.20180044
    [7]LI Hua, HUANG Jian-guo, WANG Ming-xia. Effects of manganese on growth, nutrient uptake and organic acid exudation by ectomycorrhizal fungi.[J]. Journal of Beijing Forestry University, 2012, 34(3): 76-80.
    [8]REN Xiao-xu, CAI Ti-jiu, WANG Xiao-feng. Effects of vegetation restoration models on soil nutrients in an abandoned quarry[J]. Journal of Beijing Forestry University, 2010, 32(4): 151-154.
    [9]WANG Yang, LIU Jing-shuang, DOU Jing-xin, ZHAO Guang-ying.. Seasonal variations and nutrient accumulation of Deyeuxia angustifolia litter in Sanjiang Plain wetlands, northeastern China[J]. Journal of Beijing Forestry University, 2010, 32(1): 74-81.
    [10]ZHAI Ming-pu, JIANG San-nai. Dynamics of nutrient absorption in root systems of Populus×xiao zhuanica and Robinia pseudoacacia[J]. Journal of Beijing Forestry University, 2006, 28(2): 29-33.
  • Cited by

    Periodical cited type(8)

    1. 马丹,汤志伟,马小玉,邵尔辉,黄达沧. 基于GEE的中国不同生态系统林火驱动力研究. 应用科学学报. 2024(04): 684-694 .
    2. 张吕成,孙志超,董灵波. 基于Landsat时间序列数据的火烧迹地识别与恢复效果评价. 森林工程. 2024(05): 8-16 .
    3. 侯波,李倩倩,杨艳蓉,张乐英. 基于MODIS数据的2003—2020年西南地区林火随地形因子的动态变化. 生态科学. 2024(05): 131-137 .
    4. 刘海新,钱以临,孔俊杰,张灿,刘韦志. 2003—2019年内蒙古FIRMS_MODIS植被火点时空变化. 林业科技情报. 2023(01): 1-8 .
    5. 崔阳,狄海廷,邢艳秋,常晓晴,单炜. 基于MODIS数据的2001—2018年黑龙江省林火时空分布. 南京林业大学学报(自然科学版). 2021(01): 205-211 .
    6. 吴立志,陈振南,张鹏. 基于随机森林算法的城市火灾风险评估研究. 灾害学. 2021(04): 54-60 .
    7. 孙宝军. 内蒙古电力系统自然灾害链分析. 灾害学. 2020(04): 8-12+47 .
    8. 潘霞,汪季,高永,王祯仪. 基于MODIS数据的阿拉善盟植被指数变化的地形分异性. 生态环境学报. 2019(02): 226-234 .

    Other cited types(9)

Catalog

    Article views (2510) PDF downloads (42) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return