• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. DOI: 10.13332/j.1000-1522.20170040
Citation: WANG Yi-lin, ZHOU Mei, LI Ping, SUN Guang-peng, SHI Shuang-long, XU Cheng-yang. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment[J]. Journal of Beijing Forestry University, 2017, 39(6): 60-69. DOI: 10.13332/j.1000-1522.20170040

Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment

More Information
  • Received Date: February 19, 2017
  • Revised Date: March 19, 2017
  • Published Date: May 31, 2017
  • Morphological plasticity is closely related to the ability of plant growth and resource utilization, which is an important manifestation of plant survival strategy in specific environment. To study the relationship between root morphological plasticity and ecological strategies of the plant is significant to understand the mechanism of plant adaptation to the environment. With 1-year-old Cotinus coggygria seedlings as the study materials, this paper applies the pot experiment in greenhouse and sets up five different levels of nutrient supply to analyze the root morphology characteristics (root length, surface area, root tissue density, root fineness, root branching density, etc.) and different diameters of root morphology (root length, root surface area, root volume, root tips) to study the changes of morphological and functional plasticity in the plant seedlings. The results indicated that different levels of nutrient supply showed significant (P < 0.01) interaction on root length, surface area, root tips, root forks, root tissue density, average root diameter and root fineness of the plant seedlings. In the pure sand environment, the seedlings were most closely related to the root length, root surface area and root fineness. In the environment with limited nutrient restriction, the seedlings were mainly changed by root length, root surface area, root number and branch. However, the relationship between root tip density, root branch density, root diameter and root volume was most closely related in the relatively light and medium environment. In the whole soil environment, the seedlings were mainly affected by the change of root tissue density. To a certain extent, limited nutrient supply can stimulate ≤1.0 mm diameter fine roots and limit >1.0 mm diameter fine roots. Morphological and functional plasticity in the plant seedlings reflected that the levels of nutrient supply significantly changed the strategies of nutrient absorption of Cotinus coggygria seedlings. From nutrient-sufficient to nutrient-limited and nutrient-deficient condition, seedlings tend to change their ecological strategies from enhancing the utilization ability in situ, enhancing the absorption ability in situ and expanding the absorption range, improving the storage and transportation ability, and finally change to the endurance strategies.
  • [1]
    FORTUNEL C, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species [J]. Functional Ecology, 2012, 26(5):1153 - 1161. doi: 10.1111/j.1365-2435.2012.02020.x
    [2]
    陈莹婷, 许振柱.植物叶经济谱的研究进展[J].植物生态学报, 2014, 38(10): 1135 - 1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012

    CHEN Y T, XU Z Z. Review on research of leaf economics spectrum [J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135 - 1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
    [3]
    MOONEY K A, HALITSCHKE R, KESSLER A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades [J]. Science, 2010, 327:1642 - 1644. doi: 10.1126/science.1184814
    [4]
    MALAMY J E. Intrinsic and environmental response pathways that regulate root system architecture [J]. Plant Cell & Environment, 2005, 28(1):67 - 77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-3040.2005.01306.x
    [5]
    ROGERS E D, BENFEY P N. Regulation of plant root system architecture: implications for crop advancement [J]. Current Opinion in Biotechnology, 2015, 32:93 - 98. doi: 10.1016/j.copbio.2014.11.015
    [6]
    BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants [J]. Advances in Genetics, 1965, 13(1): 115 - 155. doi: 10.1016-S0065-2660(08)60048-6/
    [7]
    HODGE A. Plastic plants and patchy soils [J]. Journal of Experimental Botany, 2006, 57(2): 401 - 411. doi: 10.1093/jxb/eri280
    [8]
    RISTOVA D, BUSCH W. Natural variation of root traits: from development to nutrient uptake [J]. Plant Physiology, 2014, 166(2): 518 - 527. doi: 10.1104/pp.114.244749
    [9]
    GROSSMAN J D, RICE K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration [J]. Evolutionary Applications, 2012, 5(5):850 - 857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1752-4571.2012.00263.x
    [10]
    PACHECOVILLALOBOS D, HARDTKE C S. Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2012, 367:1552 - 1558. doi: 10.1098/rstb.2011.0237
    [11]
    郭京衡, 曾凡江, 李尝君, 等.塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J].植物生态学报, 2014, 38(1):36 - 44. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201401004

    GUO J H, ZENG F J, LI C J, et al. Root architecture and ecological adaptation strategies in three shecterbelt plant species in the southern Taklimakan Desert[J]. Journal of Plant Ecology, 2014, 38(1):36 - 44. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201401004
    [12]
    倪薇, 霍常富, 王朋.落叶松(Larix)细根形态特征沿纬度梯度的可塑性[J].生态学杂志, 2014, 33(9): 2322 - 2329. http://d.old.wanfangdata.com.cn/Periodical/stxzz201409006

    NI W, HUO C F, WANG P. Morphological plasticity of fine root traits in Larix plantations across a latitude gradient [J]. Chinese Journal of Ecology, 2014, 33(9): 2322 - 2329. http://d.old.wanfangdata.com.cn/Periodical/stxzz201409006
    [13]
    宋清华, 赵成章, 史元春, 等.不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J].植物生态学报, 2015, 39(6): 577 - 585. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506004

    SONG Q H, ZHAO C Z, SHI Y C, et al. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes [J]. Chinese Journal of Plant Ecology, 2015, 39(6): 577 - 585. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506004
    [14]
    KASHIWAGI J, KRISHNAMURTHY L, UPADHYAYA H D, et al. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.) [J]. Euphytica, 2005, 146(3): 213 - 222. doi: 10.1007/s10681-005-9007-1
    [15]
    ABENAVOLI M R, LEONE M, SUNSERI F, et al. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy) [J]. Journal of Agronomy & Crop Science, 2015, 202(1):1 - 12. doi: 10.1111/jac.12124
    [16]
    GIEHL R F, VON W N. Root nutrient foraging [J]. Plant Physiology, 2014, 166(2):509 - 517. doi: 10.1104/pp.114.245225
    [17]
    ZÚÑIGA-FEEST A, DELGADO M, BUSTOS-SALAZAR A, et al. The southern south American Proteacease, Embothrium coccineum exhibits intraspecies variation in growth and cluster-root formation depending on climatic and edaphic origins [J]. Plant Soil, 2015, 396(1): 201 - 213. http://connection.ebscohost.com/c/articles/111969248/southern-south-american-proteaceae-embothrium-coccineum-exhibits-intraspecific-variation-growth-cluster-root-formation-depending-climatic-edaphic-origins
    [18]
    BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology, 2006, 57(1): 233 - 66. doi: 10.1146/annurev.arplant.57.032905.105159
    [19]
    KOEVOETS I T, VENEMA J H, ELZENGA J T M, et al. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance [J]. Frontiers in Plant Science, 2016, 7:1335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005332/
    [20]
    陈书文, 李娟娟, 雷新彦, 等.观赏植物黄栌快繁技术研究[J].西北农林科技大学学报(自然科学版), 2005, 33(9):117 - 120. doi: 10.3321/j.issn:1671-9387.2005.09.025

    CHEN S W, LI J J, LEI X Y, et al. Study on rapid propagateion technic for ornamental of Cotinus coggygria [J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(9):117 - 120. doi: 10.3321/j.issn:1671-9387.2005.09.025
    [21]
    李海龙, 李端亮.黄栌属植物研究进展[J].陕西林业科技, 2009(6):22 - 27. http://d.old.wanfangdata.com.cn/Conference/7454367

    LI H L, LI D L. Advances in studies on genus Cotinus (Tourn.) Mill[J]. Shaanxi Forest Science and Technology, 2009(6):22 - 27. http://d.old.wanfangdata.com.cn/Conference/7454367
    [22]
    李红云, 李焕平, 杨吉华, 等. 4种灌木林地土壤物理性状及抗侵蚀性能的研究[J].水土保持学报, 2006, 20(3):13 - 16. doi: 10.3321/j.issn:1009-2242.2006.03.004

    LI H Y, LI H P, YANG J H, et al. Study on soil physical properties and anti-erosion capability under four kinds of shrubbery [J]. Journal of Soil and Water Conservation, 2006, 20(3):13 - 16. doi: 10.3321/j.issn:1009-2242.2006.03.004
    [23]
    韩婧.香山黄栌枯萎病防治初步研究[D].北京: 北京林业大学, 2009. http: //cdmd.cnki.com.cn/article/cdmd-10022-2009161538.htm

    HAN J. Preliminary study on the control of Cotinus coggygria verticillium wilt in fragrant hill [D]. Beijing: Beijing Forestry University, 2009. http: //cdmd.cnki.com.cn/article/cdmd-10022-2009161538.htm
    [24]
    鲍绍文.黄栌与大丽轮枝菌互作的病理学机制研究[D].北京: 北京林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129242.htm

    BAO S W. Pathological mechanism of interaction between Cotinus coggygria and Verticillium dahliae [D]. Beijing: Beijing Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129242.htm
    [25]
    PACHOLCZAK A, SZYDŁO W, ŁUKASZEWSKA A. The effect of etiolation and shading of stock plants on rhizogenesis in stem cuttings of Cotinus coggygria [J]. Acta Physiologiae Plantarum, 2005, 27(4):417 - 428. doi: 10.1007/s11738-005-0046-y
    [26]
    METIVIER P S R, YEUNG E C, PATEL K R, et al. In vitro rooting of microshoots of Cotinus coggygria Mill, a woody ornamental plant [J]. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(2):119 - 123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7957f711bd30c7ed6c9bdbb082068bb6
    [27]
    VALIANOU L, KARAPANAGIOTIS I, CHRYSSOULAKIS Y. Erratum to: comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography [J]. Analytical and Bioanalytical Chemistry, 2009, 395(7):2175 - 2189. doi: 10.1007/s00216-009-3137-6
    [28]
    MANTZOURIS D, KARAPANAGIOTIS I, VALIANOU L, et al. HPLC-DAD-MS analysis of dyes identified in textiles from Mount Athos [J]. Analytical and Bioanalytical Chemistry, 2011, 399(9):3065 - 3079. doi: 10.1007/s00216-011-4665-4
    [29]
    MATIC S, STANIC S, BOGOJEVIC D, et al. Genotoxic potential of Cotinus coggygria Scop. (Anacardiaceae) stem extract in vivo [J]. Genetics & Molecular Biology, 2011, 34(2):298 - 303. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3115326
    [30]
    刘刚, 张光灿, 刘霞.土壤干旱胁迫对黄栌叶片光合作用的影响[J].应用生态学报, 2010, 21(7):1697 - 1701. http://d.old.wanfangdata.com.cn/Periodical/yystxb201007011

    LIU G, ZHANG G C, LIU X. Responses of Cotinus coggygria var. cinerea photosynthesis to soil drought stress [J]. Chinese Journal of Applied Ecology, 2010, 21(7):1697 - 1701. http://d.old.wanfangdata.com.cn/Periodical/yystxb201007011
    [31]
    葛雨萱, 赵阳, 甘长青, 等.不同光环境对黄栌光合特性及生长势和叶色的影响[J].中国农学通报, 2011, 27(19):19 - 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201119005

    GE Y X, ZHAO Y, GAN C Q, et al. The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop. [J]. Chinese Agricultural Science Bulletin, 2011, 27(19):19 - 22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201119005
    [32]
    李金航, 齐秀慧, 徐程扬, 等.黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J].林业科学, 2015, 51(1):29 - 41. http://d.old.wanfangdata.com.cn/Periodical/lykx201501004

    LI J H, QI X H, XU C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings [J]. Scientia Silvae Sinicae, 2015, 51(1):29 - 41. http://d.old.wanfangdata.com.cn/Periodical/lykx201501004
    [33]
    李金航, 齐秀慧, 徐程扬, 等.华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J].北京林业大学学报, 2014, 36(1):48 - 54. http://j.bjfu.edu.cn/article/id/9958

    LI J H, QI X H, XU C Y, et al. Short-term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China [J]. Journal of Beijing Forestry University, 2014, 36(1):48 - 54. http://j.bjfu.edu.cn/article/id/9958
    [34]
    PAEZGARCIA A, MOTES C M, SCHEIBLE W R, et al. Root traits and phenotyping strategies for plant improvement [J]. Plants, 2015, 4(2): 334 - 355. doi: 10.3390/plants4020334
    [35]
    MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes [J]. New Phytologist, 2015, 207(3):505 - 518. doi: 10.1111/nph.13363
    [36]
    HOYOS-VILLEGAS V, WRIGHT E M, KELLY J D. GGE biplot analysis of yield associations with root traits in a Mesoamerican bean diversity panel [J]. Crop Science, 2016, 56(3): 1081 - 1094. doi: 10.2135/cropsci2015.10.0609
    [37]
    YAN W, RAJCAN I. Biplot analysis of test sites and trait relations of soybean in Ontario [J]. Crop Science, 2002, 42(1): 11 - 20. doi: 10.2135/cropsci2002.1100
    [38]
    PLAZA-BONILLA D, ÁLVARO-FUENTES J, ARRÚE J L, et al. Tillage and nitrogen fertilization effects on nitrous oxide yield-scaled emissions in a rainfed Mediterranean area [J]. Agriculture Ecosystems & Environment, 2014, 189(2):43 - 52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff7e8d16ac11d36bfb0b590967448a45
    [39]
    DANNOWSKI M, BLOCK A. Fractal geometry and root system structures of heterogeneous plant communities [J]. Plant and Soil, 2005, 272(1): 61 - 76. doi: 10.1007-s11104-004-3981-2/
    [40]
    LIU J, WANG B, ZHANG Y, et al. Microtubule dynamics is required for root elongation growth under osmotic stress in Arabidopsis [J]. Plant Growth Regulation, 2014, 74(2):187 - 192. doi: 10.1007/s10725-014-9910-3
    [41]
    FITTER A H, STICKLAND T R, HARVEY M L, et al. Architectural analysis of plant root systems (1): architectural correlates of exploitation efficiency [J]. New Phytologist, 1991, 118(3):375 - 382. doi: 10.1111/j.1469-8137.1991.tb00018.x
    [42]
    GUSWA A J. Effect of plant uptake strategy on the water-optimal root depth [J]. Water Resources Research, 2010, 46(9): 4921 - 4926. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=213f802522b28b7c6ad0a7cc1aab6031
    [43]
    COMAS L H, BECKER S R, VON CRUZ M V, et al. Root traits contributing to plant productivity under drought [J/OL]. Frontiers in Plant Science, 2013, 4(4): 442[2017-01-06]. doi: 10.3389/fpls.2013.00442.
    [44]
    HENKE M, SARLIKIOTI V, KURTH W, et al. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model [J]. Plant Soil, 2014, 385(1): 49 - 62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9be1de23b672422ab387c9e36c48971e
    [45]
    CAMPBELL B D, GRIME J P, MACKEY J M L. A trade-off between scale and precision in resource foraging [J]. Oecologia, 1991, 87(4): 532 - 538. doi: 10.1007/BF00320417
    [46]
    POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control [J]. New Phytologist, 2012, 193(1): 30 - 50. doi: 10.1111/j.1469-8137.2011.03952.x
    [47]
    EISSENSTAT D M. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks [J]. New Phytologist, 1991, 118(1): 63 - 68. doi: 10.1111/j.1469-8137.1991.tb00565.x
    [48]
    EISSENSTAT D M, WELLS C E, YANAI R D, et al. Building roots in a changing environment: implications for root longevity [J]. New Phytologist, 2000, 147(1): 33 - 42. doi: 10.1046/j.1469-8137.2000.00686.x
    [49]
    GRUBER B D, GIEHL R F H, FRIEDEL S, et al. Plasticity of the arabidopsis root system under nutrient deficiencies [J]. Plant Physiology, 2013, 163(1): 161 - 179. doi: 10.1104/pp.113.218453
    [50]
    KROUK G, LACOMBE B, BIELACH A, et al. Nitrate regulated auxin transport by NRT 1.1 defines a mechanism for nutrient sensing in plants [J]. Developmental Cell, 2010, 18(6): 927 - 937. doi: 10.1016/j.devcel.2010.05.008
    [51]
    BIROUSTE M, ZAMORA-LEDEZMA E, BOSSARD C, et al. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content [J]. Plant Soil, 2014, 374(1): 299 - 313. doi: 10.1007/s11104-013-1874-y
    [52]
    REWALD B, RECHENMACHER A, GODBOLD D L. It's complicated: intraroot system variability of respiration and morphological traits in four deciduous tree species [J]. Plant Physiology, 2014, 166(2): 736 - 745. doi: 10.1104/pp.114.240267
    [53]
    HUMMEL I, VILE D, VIOLLE C, et al. Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species [J]. The New phytologist, 2007, 173(2): 313 - 321. doi: 10.1111/j.1469-8137.2006.01912.x
    [54]
    MCCORMACK M L, GUO D. Impacts of environmental factors on fine root lifespan [J]. Frontiers in Plant Science, 2014, 5(5):205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618506
    [55]
    梅莉, 王政权, 程云环, 等.林木细根寿命及其影响因子研究进展[J].植物生态学报, 2004, 28(4): 704 - 710. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200405017

    MEI L, WANG Z Q, CHENG Y H, et al. A review: factors influencing fine root longevity in forest ecosystems [J]. Chinese Journal of Plant Ecology, 2004, 28(4): 704 - 710. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200405017
    [56]
    HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1):9 - 24. doi: 10.1111/j.1469-8137.2004.01015.x
    [57]
    FITTER A H, STICKLABD T R. Architectural analysis of plant root systems 2: influence of nutrient supply on architecture in contrasting plant species [J]. New Phytologist, 1991, 118(3): 383 - 389. doi: 10.1111/j.1469-8137.1991.tb00019.x
    [58]
    PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72(2): 293 - 309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;
    [59]
    WEI H X, XU C Y, MA L Y, et al. Effect of late-season fertilization on nutrient reserves and carbohydrate accumulation in bareroot Larix olgensis seedlings [J]. Journal of Plant Nutrition, 2014, 37(2): 279 - 293. doi: 10.1080/01904167.2013.859697
    [60]
    SENOCK R S, LEUSCHNER C. Axial water flux dynamics in small diameter roots of a fast growing tropical tree [J]. Plant and Soil, 1999, 208(1): 57 - 71. doi: 10.1023/A:1004494432610
    [61]
    张晶, 沈应柏, 徐程扬.树木根系呼吸及其对环境的反应研究进展[J].东北林业大学学报, 2007, 35(2):78 - 81. doi: 10.3969/j.issn.1000-5382.2007.02.030

    ZHANG J, SHEN Y B, XU C Y. Review's on root respiration and it responses to environment changes [J]. Journal of Northeast Forestry University, 2007, 35(2):78 - 81. doi: 10.3969/j.issn.1000-5382.2007.02.030
    [62]
    WANG G L, XUE S, LIU F, et al. Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum [J/OL]. Plant Soil, 2017[2017-02-25].10.1007/s11104-016-3160-2
  • Cited by

    Periodical cited type(25)

    1. 成思丽,王丹,贺斌,胡兆柳,陈林,唐军荣,陈诗,许玉兰,蔡年辉. 不同苗龄云南松苗木平茬根系形态特征分析. 浙江农林大学学报. 2024(02): 322-332 .
    2. 蔡年辉,胡兆柳,贺斌,成思丽,陈林,唐军荣,陈诗,许玉兰,李根前. 云南松苗木萌枝能力对截干高度的响应. 西北农林科技大学学报(自然科学版). 2024(04): 85-94 .
    3. 向凌潇,张俊威,李建明. 灌溉量与灌溉频率对番茄根系生长、产量和营养元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(05): 80-92+123 .
    4. 崔远远,张征云,刘鹏,张运春,张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响. 生态环境学报. 2023(01): 158-165 .
    5. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    6. 胡静,张桥英,张运春,崔远远,谭晶华. 水位对若尔盖高原湿地植物群落结构和植物功能性状的影响. 绿色科技. 2023(06): 22-29 .
    7. 石海涛,张大才. 干旱胁迫对高寒草甸不同功能群植物的影响. 林业科技通讯. 2023(08): 48-51 .
    8. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 植物生长调节剂对云南松苗木根系形态的影响. 河南农业大学学报. 2022(03): 381-391 .
    9. 代丽丽,张传生,石研. 黄栌个体生长情况与根系结构的关系探究. 现代园艺. 2022(12): 6-8 .
    10. 张燕,葛江琨,李洪亮,杨晨,戴振芬,陈洪年. 高陡岩质边坡体裂隙率与植物生长速度的关系研究. 安全与环境工程. 2022(04): 93-100 .
    11. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 云南松苗木根系可塑性对平茬高度的响应. 云南大学学报(自然科学版). 2022(06): 1305-1313 .
    12. 杜志敏,向凌云,杜凯敏,杨文玲,王继雯,雷高,郭雪白,郭亮,周静,巩涛,陈国参,甄静. 磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究. 农业环境科学学报. 2021(01): 92-101 .
    13. 贾林巧,陈光水,张礼宏,陈廷廷,姜琦,陈宇辉,范爱连,王雪. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报. 2021(02): 529-537 .
    14. 李宝财,梁文汇,蓝金宣,李军集,杨卓颖,黄晓露. 不同沙土配比基质对岗松幼苗根系形态及营养吸收的影响. 广西林业科学. 2021(02): 157-163 .
    15. 郑诚,温仲明,郭倩,樊勇明,杨玉婷,高飞. 基于MaxEnt模型的延河流域草本植物适生分布与功能性状分析. 生态学报. 2021(17): 6825-6835 .
    16. 李佳佳,魏多,徐翎清,王秋红,马龙彪,刘大丽. 甜菜对低氮胁迫的形态学响应机制. 中国农学通报. 2021(36): 41-46 .
    17. 张祖衔,邓薇,李春,徐洪伟,周晓馥. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响. 北方园艺. 2021(23): 11-20 .
    18. 张岚,张玲卫,刘会良,陈艳锋. 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报. 2020(01): 9-16 .
    19. 李金航,周玫,朱济友,徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报. 2020(03): 65-77 . 本站查看
    20. 李青,祖艳群,王吉秀,杨晶祥,牛秀艳. 铅锌矿区重金属胁迫对野生小花南芥根系特征的影响. 贵州农业科学. 2020(04): 148-152 .
    21. 吴焦焦,张文,高岚,谭星,乐佳兴,田秋玲,冯大兰,黄小辉,齐代华,许一丰,梁洪海,吴铭河,黄诗夏,刘芸. 三峡库区次生黄栌灌木林的群落特征及种间联结性. 生态学报. 2020(12): 4053-4063 .
    22. 李煜,赵国红,尹峰,宁立波. 岩质边坡覆绿植物的根系形态变化特征及影响因子研究. 湖南师范大学自然科学学报. 2020(02): 45-52+81 .
    23. 王效瑾,高巍,赵鹏,于冲冲,刘红恩,聂兆君,秦世玉,李畅. 小麦幼苗根系形态对镉胁迫的响应. 农业环境科学学报. 2019(06): 1218-1225 .
    24. 刘海,韦莉,任永胜,易艳灵,杨倩,李贤伟,范川. 柏木根系分泌物对栾树细根形态及N、P含量的影响. 西北植物学报. 2019(09): 1661-1669 .
    25. 周华健,冯文新,赵国红,尹峰,宁立波,白冰珂. 黄栌在高陡岩质边坡覆绿中的环境适应特征. 湖南师范大学自然科学学报. 2019(05): 60-64+80 .

    Other cited types(18)

Catalog

    Article views (2512) PDF downloads (42) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return