• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
JIA Fu-li, WANG Cong-peng, LIU Sha, JIAO Zhi-yin, YIN Wei-lun, XIA Xin-li. Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra[J]. Journal of Beijing Forestry University, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055
Citation: JIA Fu-li, WANG Cong-peng, LIU Sha, JIAO Zhi-yin, YIN Wei-lun, XIA Xin-li. Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra[J]. Journal of Beijing Forestry University, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055

Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra

More Information
  • Received Date: March 05, 2017
  • Revised Date: April 18, 2017
  • Published Date: June 30, 2017
  • In order to study the effects of exogenous BR and IAA on the drought resistance of poplar, the 1-year-old potted seedlings of three Populus deltoides × P. nigra clones, NE19, R270, and 107 were selected for 15 days of treatment and sprayed with 10 μmol/L brassinostevoid (BR) and 100 mg/L IAA. The results showed that BR and IAA significantly improved the net photosynthetic rate (Pn), photochemical quantum yield (Fv/Fm), chlorophyll content, leaf water-holding capacity under drought condition compared with the hormone-free. The Pn of NE19, R270 and 107 was increased by 19%, 60% and 85%, respectively in BR treatment, and 35%, 50% and 80%, respectively in IAA treatment. The Fv/Fm of BR group increased by 7.7%, 7.5% and 10.9% compared with the non-hormone group, while the IAA group increased by 7.4%, 8% and 11.9%, respectively. The results indicated that exogenous BR and IAA improved the drought tolerance of Populus deltoides × P. nigra clones. Examining the leaf discs treated with exogenous hormones treatment and it was indicated that, for all three clones, the stomatal indix decreased by 12.28%, 25.60% and 20.31%, respectively in BR treatment, and the IAA treatment decreased by 13.00%, 13.15% and 14.48%, respectively. BR and IAA treatments inhibit stomatal development to reduce water loss under drought conditions.The expressions of EPF1, EPF2, EPFL9, ERECTA, FAMA, SDD1 in stomatal growth-related genes were detected by fluorescence quantitative PCR. EPF1, EPF2, ERECTA and SDD1 which negatively control stomatal development were increased, but the expressions of FAMA and EPFL9 which positively regulate the process were decreased. In summary, phytohormone BR and IAA are involved in the process of stomatal development in Populus deltoides × P.nigra, and increase drought resistance of poplar by inhibiting stomatal development under drought conditions.
  • [1]
    MARSHALL A, AALEN R B, AUDENAERT D, et al. Tackling drought stress: receptor-like kinases present new approaches[J]. Plant Cell, 2012, 24(6): 2262-2278. doi: 10.1105/tpc.112.096677
    [2]
    井大炜, 邢尚军, 杜振宇, 等.干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J].应用生态学报, 2013, 24(7): 1809-1816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307005

    JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1809-1816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307005
    [3]
    李燕, 薛立, 吴敏.树木抗旱机理研究进展[J].生态学杂志, 2007, 26(11): 1857-1866. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711027

    LI Y, XUE L, WU M. Research advances in mechanisms of tree species drought resistance[J]. Chinese Journal of Ecology, 2007, 26(11): 1857-1866. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711027
    [4]
    HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424: 901-908. doi: 10.1038/nature01843
    [5]
    SAUER M, ROBERT S, KLEINE-VEHN J. Auxin: simply complicated[J]. Journal of Experimental Botany, 2013, 64(9): 2565-2577. doi: 10.1093/jxb/ert139
    [6]
    BALCEROWICZ M, RANJAN A, RUPPRECHT L, et al. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins[J]. Development, 2014, 141(16): 3165-3176. doi: 10.1242/dev.109181
    [7]
    ZHANG J Y, HE S B, LI L, et al. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 3015-3023. doi: 10.1073/pnas.1400542111
    [8]
    LE J, LIU X G, YANG K Z, et al. Auxin transport and activity regulate stomatal patterning and development[J]. Nature Communications, 2014, 5(2): 3090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5acd7dbe11491f54838d66f187d02990
    [9]
    刘娟, 马小乐, 尚勋武, 等.外源IAA对小麦'西旱2号'幼苗水分胁迫和NaCl胁迫的缓解响应[J].甘肃农业大学学报, 2009, 44(2): 47-51. doi: 10.3969/j.issn.1003-4315.2009.02.010

    LIU J, MA X L, SHANG X W, et al. Regulation of exogenous auxin IAA on drought and salt stress during seeding stage of spring wheat (cv. xihan No. 2)[J]. Journal of Gansu Agricultural University, 2009, 44(2): 47-51. doi: 10.3969/j.issn.1003-4315.2009.02.010
    [10]
    董永华, 史吉平.喷施生长素和赤霉素对土壤干旱条件下小麦幼苗生理特性的影响[J].华北农学报, 1998, 13(3): 18-22. doi: 10.3321/j.issn:1000-7091.1998.03.004

    DONG Y H, SHI J P. Effect of indole-3-acetic acid and gibberellic acid as foliar spraying agents on physiological characters of wheat seedlings under dry soil conditions[J]. Acta Agriculturae Boreali-Sinica, 1998, 13(3): 18-22. doi: 10.3321/j.issn:1000-7091.1998.03.004
    [11]
    苗丽, 巩彪, 聂文婧, 等.外源IAA对NaHCO3胁迫下黄瓜幼苗光合特性和抗氧化系统的影响[J].植物生理学报, 2014, 50(6): 765-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201406012

    MIAO L, GONG B, NIE W J, et al. Effects of exogenous IAA on photosynthetic characteristics and antioxidative system in cucumis sativus seedlings under NaHCO3 stress[J]. Plant Physiology Journal, 2014, 50(6): 765-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201406012
    [12]
    CLOUSE S D, LANGFORD M, MCMORRIS T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiol, 1996, 111(3): 671-678. doi: 10.1104-pp.111.3.671/
    [13]
    李涛涛, 高永峰, 马瑄, 等.外源油菜素内酯对三种杨树在干旱、盐和铜胁迫下光合生理的影响[J].基因组学与应用生物学, 2016, 35(1): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jyzxyyyswx201601034

    LI T T, GAO Y F, MA X, et al. Effects of exogenous brassionsteroid on photosynthesis of three spesies of Populus under drought, salt and copper stress[J]. Genomics and Applied Biology, 2016, 35(1): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jyzxyyyswx201601034
    [14]
    管莉, 张阿英. CaM与ZmCCaMK相互作用参与BR诱导的玉米叶片抗氧化防护[J].江苏农业学报, 2015, 31(1): 10-15. doi: 10.3969/j.issn.1000-4440.2015.01.002

    GUAN L, ZHANG A Y. CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(1): 10-15. doi: 10.3969/j.issn.1000-4440.2015.01.002
    [15]
    王丛鹏, 贾伏丽, 刘沙, 等.干旱对欧美杨气孔发育的影响[J].北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050

    WANG C P, JIA F L, LIU S, et al. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
    [16]
    PILLITTERI L J, DONG J. Stomatal development in arabidopsis[J]. International Journal of Developmental Biology, 2011, 55(1): 5-10. doi: 10.1387/ijdb.103094ls
    [17]
    KHAN M, ROZHON W, BIGEARD J, et al. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2013, 288(11): 7519-7527. doi: 10.1074/jbc.M112.384453
    [18]
    KIM T W, MICHNIEWICZ M, BERGMANN D C, et al. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature, 2012, 482: 419-422. doi: 10.1038/nature10794
    [19]
    HARA K, KAJITA R, TORⅡ K U, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule[J]. Genes & Development, 2007, 21(14): 1720-1725. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1920166
    [20]
    SUGANO S S, SHIMADA T, IMAI Y, et al. Stomagen positively regulates stomatal density in arabidopsis[J]. Nature, 2010, 463: 241-244. doi: 10.1038/nature08682
    [21]
    SHPAK E D, MCABEE J M, PILLITTERI L J, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Science, 2005, 309: 290-293. doi: 10.1126/science.1109710
    [22]
    PILLITTERI L J, TORⅡ K U. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development[J]. Bioessays, 2007, 29(9): 861-870. doi: 10.1002/bies.20625
    [23]
    CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1): 9-23. doi: 10.1111/j.1469-8137.2007.02351.x
    [24]
    WANG C, LIU S, DONG Y, et al. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar[J]. Plant Biotechnology Journal, 2016, 14(3): 849-860. doi: 10.1111/pbi.12434
    [25]
    LIU S, WANG C, JIA F, et al. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(3): 419-431. doi: 10.1007/s11240-016-0957-x
    [26]
    ANJUM S A, WANG L C, FAROOQ M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange[J]. Journal of Agronomy & Crop Science, 2011, 197(3): 177-185. doi: 10.1111/j.1439-037X.2010.00459.x
    [27]
    GENDRON J M, WANG Z Y. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 21152-21157. doi: 10.1073/pnas.1210799110
  • Related Articles

    [1]Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398
    [2]Zhu Li, Ma Jingyao, Meng Zhaoxin, Shi Jinsong, Xing Xin, Jiang Zhongjin. Compensation control of woodworking feeding platform based on self-adaptive genetic optimization recurrent neural network[J]. Journal of Beijing Forestry University, 2020, 42(12): 125-134. DOI: 10.12171/j.1000-1522.20200248
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]MENG Zhao-xin, XIAO Ding-fu, YIN Hang, LI Shang, ZHANG Cong.. Mechanism error compensation method of parallel curve feeding platform.[J]. Journal of Beijing Forestry University, 2016, 38(9): 95-101. DOI: 10.13332/j.1000-1522.20160026
    [5]HUANG He-shan, LI Ting, LIU Jin-hao. Dynamic modeling and simulation analysis of 6-HUS parallel moving platform[J]. Journal of Beijing Forestry University, 2015, 37(4): 143-150. DOI: DOI:10.13332/j.1000-1522.20140349
    [6]YU Yang, YU Guo-sheng, DE Xue-hong, YUAN Da-long, CHEN Zhong-jia. Trajectory simulation of the internal cylinder meshing forming device based on ADAMS method[J]. Journal of Beijing Forestry University, 2014, 36(4): 147-151. DOI: 10.13332/j.cnki.jbfu.2014.04.003
    [7]DUAN Xu-liang, FENG Xiu-lan, ZHAO Lei, ZHANG Zhi-xiang, LIN Shan-zhi. Design and development of information sharing platform on forest and flower germplasm resources[J]. Journal of Beijing Forestry University, 2007, 29(5): 147-152. DOI: 10.13332/j.1000-1522.2007.05.027
    [8]GAO Kai, LI Wen-bin, KAN Jiang-ming. An automatic measuring method for the trunk curvature of standing tree based on computer vision[J]. Journal of Beijing Forestry University, 2007, 29(4): 10-14. DOI: 10.13332/j.1000-1522.2007.04.003
    [9]LIU Peng-ju, ZHOU Yu-fei, TANG Xiao-ming. Intelligent data input software of forest resources on PDA[J]. Journal of Beijing Forestry University, 2007, 29(2): 105-110.
    [10]DU Hua-qiang, FAN Wen-yi, ZHAO Xian-wen, WANG Xue. Fractal and geo-statistic analysis software system for remote sensing data based on Matlab[J]. Journal of Beijing Forestry University, 2005, 27(5): 92-97.
  • Cited by

    Periodical cited type(2)

    1. 詹茹心,李慧,马洪娜. 缺磷胁迫对益母草幼苗叶片的影响. 耕作与栽培. 2024(05): 18-24 .
    2. 姚诗雨,王杰,黄文娟,彭承志,宋双飞. 不同展叶物候期胡杨离子分布、吸收和运输特征及其与土壤盐分关系. 西北植物学报. 2023(12): 2118-2129 .

    Other cited types(1)

Catalog

    Article views (2677) PDF downloads (38) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return