Citation: | JIA Fu-li, WANG Cong-peng, LIU Sha, JIAO Zhi-yin, YIN Wei-lun, XIA Xin-li. Effects of exogenous BR and IAA on drought tolerance of Populus deltoides × P.nigra[J]. Journal of Beijing Forestry University, 2017, 39(7): 31-39. DOI: 10.13332/j.1000-1522.20170055 |
[1] |
MARSHALL A, AALEN R B, AUDENAERT D, et al. Tackling drought stress: receptor-like kinases present new approaches[J]. Plant Cell, 2012, 24(6): 2262-2278. doi: 10.1105/tpc.112.096677
|
[2] |
井大炜, 邢尚军, 杜振宇, 等.干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J].应用生态学报, 2013, 24(7): 1809-1816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307005
JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1809-1816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307005
|
[3] |
李燕, 薛立, 吴敏.树木抗旱机理研究进展[J].生态学杂志, 2007, 26(11): 1857-1866. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711027
LI Y, XUE L, WU M. Research advances in mechanisms of tree species drought resistance[J]. Chinese Journal of Ecology, 2007, 26(11): 1857-1866. http://d.old.wanfangdata.com.cn/Periodical/stxzz200711027
|
[4] |
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424: 901-908. doi: 10.1038/nature01843
|
[5] |
SAUER M, ROBERT S, KLEINE-VEHN J. Auxin: simply complicated[J]. Journal of Experimental Botany, 2013, 64(9): 2565-2577. doi: 10.1093/jxb/ert139
|
[6] |
BALCEROWICZ M, RANJAN A, RUPPRECHT L, et al. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins[J]. Development, 2014, 141(16): 3165-3176. doi: 10.1242/dev.109181
|
[7] |
ZHANG J Y, HE S B, LI L, et al. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(29): 3015-3023. doi: 10.1073/pnas.1400542111
|
[8] |
LE J, LIU X G, YANG K Z, et al. Auxin transport and activity regulate stomatal patterning and development[J]. Nature Communications, 2014, 5(2): 3090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5acd7dbe11491f54838d66f187d02990
|
[9] |
刘娟, 马小乐, 尚勋武, 等.外源IAA对小麦'西旱2号'幼苗水分胁迫和NaCl胁迫的缓解响应[J].甘肃农业大学学报, 2009, 44(2): 47-51. doi: 10.3969/j.issn.1003-4315.2009.02.010
LIU J, MA X L, SHANG X W, et al. Regulation of exogenous auxin IAA on drought and salt stress during seeding stage of spring wheat (cv. xihan No. 2)[J]. Journal of Gansu Agricultural University, 2009, 44(2): 47-51. doi: 10.3969/j.issn.1003-4315.2009.02.010
|
[10] |
董永华, 史吉平.喷施生长素和赤霉素对土壤干旱条件下小麦幼苗生理特性的影响[J].华北农学报, 1998, 13(3): 18-22. doi: 10.3321/j.issn:1000-7091.1998.03.004
DONG Y H, SHI J P. Effect of indole-3-acetic acid and gibberellic acid as foliar spraying agents on physiological characters of wheat seedlings under dry soil conditions[J]. Acta Agriculturae Boreali-Sinica, 1998, 13(3): 18-22. doi: 10.3321/j.issn:1000-7091.1998.03.004
|
[11] |
苗丽, 巩彪, 聂文婧, 等.外源IAA对NaHCO3胁迫下黄瓜幼苗光合特性和抗氧化系统的影响[J].植物生理学报, 2014, 50(6): 765-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201406012
MIAO L, GONG B, NIE W J, et al. Effects of exogenous IAA on photosynthetic characteristics and antioxidative system in cucumis sativus seedlings under NaHCO3 stress[J]. Plant Physiology Journal, 2014, 50(6): 765-771. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201406012
|
[12] |
CLOUSE S D, LANGFORD M, MCMORRIS T C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiol, 1996, 111(3): 671-678. doi: 10.1104-pp.111.3.671/
|
[13] |
李涛涛, 高永峰, 马瑄, 等.外源油菜素内酯对三种杨树在干旱、盐和铜胁迫下光合生理的影响[J].基因组学与应用生物学, 2016, 35(1): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jyzxyyyswx201601034
LI T T, GAO Y F, MA X, et al. Effects of exogenous brassionsteroid on photosynthesis of three spesies of Populus under drought, salt and copper stress[J]. Genomics and Applied Biology, 2016, 35(1): 218-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jyzxyyyswx201601034
|
[14] |
管莉, 张阿英. CaM与ZmCCaMK相互作用参与BR诱导的玉米叶片抗氧化防护[J].江苏农业学报, 2015, 31(1): 10-15. doi: 10.3969/j.issn.1000-4440.2015.01.002
GUAN L, ZHANG A Y. CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(1): 10-15. doi: 10.3969/j.issn.1000-4440.2015.01.002
|
[15] |
王丛鹏, 贾伏丽, 刘沙, 等.干旱对欧美杨气孔发育的影响[J].北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
WANG C P, JIA F L, LIU S, et al. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
|
[16] |
PILLITTERI L J, DONG J. Stomatal development in arabidopsis[J]. International Journal of Developmental Biology, 2011, 55(1): 5-10. doi: 10.1387/ijdb.103094ls
|
[17] |
KHAN M, ROZHON W, BIGEARD J, et al. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2013, 288(11): 7519-7527. doi: 10.1074/jbc.M112.384453
|
[18] |
KIM T W, MICHNIEWICZ M, BERGMANN D C, et al. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature, 2012, 482: 419-422. doi: 10.1038/nature10794
|
[19] |
HARA K, KAJITA R, TORⅡ K U, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule[J]. Genes & Development, 2007, 21(14): 1720-1725. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1920166
|
[20] |
SUGANO S S, SHIMADA T, IMAI Y, et al. Stomagen positively regulates stomatal density in arabidopsis[J]. Nature, 2010, 463: 241-244. doi: 10.1038/nature08682
|
[21] |
SHPAK E D, MCABEE J M, PILLITTERI L J, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Science, 2005, 309: 290-293. doi: 10.1126/science.1109710
|
[22] |
PILLITTERI L J, TORⅡ K U. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development[J]. Bioessays, 2007, 29(9): 861-870. doi: 10.1002/bies.20625
|
[23] |
CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1): 9-23. doi: 10.1111/j.1469-8137.2007.02351.x
|
[24] |
WANG C, LIU S, DONG Y, et al. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar[J]. Plant Biotechnology Journal, 2016, 14(3): 849-860. doi: 10.1111/pbi.12434
|
[25] |
LIU S, WANG C, JIA F, et al. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(3): 419-431. doi: 10.1007/s11240-016-0957-x
|
[26] |
ANJUM S A, WANG L C, FAROOQ M, et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange[J]. Journal of Agronomy & Crop Science, 2011, 197(3): 177-185. doi: 10.1111/j.1439-037X.2010.00459.x
|
[27] |
GENDRON J M, WANG Z Y. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109: 21152-21157. doi: 10.1073/pnas.1210799110
|
[1] | Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398 |
[2] | Zhu Li, Ma Jingyao, Meng Zhaoxin, Shi Jinsong, Xing Xin, Jiang Zhongjin. Compensation control of woodworking feeding platform based on self-adaptive genetic optimization recurrent neural network[J]. Journal of Beijing Forestry University, 2020, 42(12): 125-134. DOI: 10.12171/j.1000-1522.20200248 |
[3] | Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234 |
[4] | MENG Zhao-xin, XIAO Ding-fu, YIN Hang, LI Shang, ZHANG Cong.. Mechanism error compensation method of parallel curve feeding platform.[J]. Journal of Beijing Forestry University, 2016, 38(9): 95-101. DOI: 10.13332/j.1000-1522.20160026 |
[5] | HUANG He-shan, LI Ting, LIU Jin-hao. Dynamic modeling and simulation analysis of 6-HUS parallel moving platform[J]. Journal of Beijing Forestry University, 2015, 37(4): 143-150. DOI: DOI:10.13332/j.1000-1522.20140349 |
[6] | YU Yang, YU Guo-sheng, DE Xue-hong, YUAN Da-long, CHEN Zhong-jia. Trajectory simulation of the internal cylinder meshing forming device based on ADAMS method[J]. Journal of Beijing Forestry University, 2014, 36(4): 147-151. DOI: 10.13332/j.cnki.jbfu.2014.04.003 |
[7] | DUAN Xu-liang, FENG Xiu-lan, ZHAO Lei, ZHANG Zhi-xiang, LIN Shan-zhi. Design and development of information sharing platform on forest and flower germplasm resources[J]. Journal of Beijing Forestry University, 2007, 29(5): 147-152. DOI: 10.13332/j.1000-1522.2007.05.027 |
[8] | GAO Kai, LI Wen-bin, KAN Jiang-ming. An automatic measuring method for the trunk curvature of standing tree based on computer vision[J]. Journal of Beijing Forestry University, 2007, 29(4): 10-14. DOI: 10.13332/j.1000-1522.2007.04.003 |
[9] | LIU Peng-ju, ZHOU Yu-fei, TANG Xiao-ming. Intelligent data input software of forest resources on PDA[J]. Journal of Beijing Forestry University, 2007, 29(2): 105-110. |
[10] | DU Hua-qiang, FAN Wen-yi, ZHAO Xian-wen, WANG Xue. Fractal and geo-statistic analysis software system for remote sensing data based on Matlab[J]. Journal of Beijing Forestry University, 2005, 27(5): 92-97. |
1. |
詹茹心,李慧,马洪娜. 缺磷胁迫对益母草幼苗叶片的影响. 耕作与栽培. 2024(05): 18-24 .
![]() | |
2. |
姚诗雨,王杰,黄文娟,彭承志,宋双飞. 不同展叶物候期胡杨离子分布、吸收和运输特征及其与土壤盐分关系. 西北植物学报. 2023(12): 2118-2129 .
![]() |