• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Jia-lin, Man Xiu-ling. Partitioning of water vapor flux on the ecosystem scale: a case study on larch boreal forests[J]. Journal of Beijing Forestry University, 2018, 40(1): 46-56. DOI: 10.13332/j.1000-1522.20170202
Citation: Liu Jia-lin, Man Xiu-ling. Partitioning of water vapor flux on the ecosystem scale: a case study on larch boreal forests[J]. Journal of Beijing Forestry University, 2018, 40(1): 46-56. DOI: 10.13332/j.1000-1522.20170202

Partitioning of water vapor flux on the ecosystem scale: a case study on larch boreal forests

More Information
  • Received Date: June 28, 2017
  • Revised Date: December 03, 2017
  • Published Date: December 31, 2017
  • ObjectiveEvapotranspiration (ET) including evaporation (E) and transpiration (T), was the main way that ecosystem precipitation (P) returned to the atmosphere. Under the background of climate change, understanding the characteristics and distribution of ET in a cold-temperate Larix gmelinii natural forest at permafrost region of northern part of Daxing'an Mountains, northeastern China could help to further comprehend the response modes of the boreal forest ecosystem to the climate change.
    MethodModel simulation and field experiments were applied for estimating and measuring ecosystem scale evaporation (E), transpiration (T), and evapotranspiration (ET) in a boreal larch forest. E includes forest floor evaporation (Ef) and canopy interception (Ec) which only occurred during rainfall events. Total forest transpiration (Ttot) in this study is the sum of dominant tree transpiration (Td), intermediate tree transpiration (Ti) and suppressed tree transpiration (Ts). Furthermore, we analyzed the variations and allocation proportions of ET and components under conditions of non-rainy or rainy. Then we discussed the responses of Ef, Ttot and ET to the net radiation (Rn) and the vapor pressure deficit (VPD) under different water input conditions.
    ResultDiurnal variations of ET and its components all performed as single peak patterns in both non-rainy and rainy days, and peak value in each curve at non-rainy day grouping was higher than in rainy day grouping. Ef, Td, Ti, Ts and ET in non-rainy days were 10.3, 25.6, 15.2, 10.8 and 66.3mm, respectively. Meanwhile, Ef, Ec, Td, Ti, Ts and ET in rainy days were 2.2, 24.3, 11.2, 5.1, 3.8 and 47.8mm, respectively.In non-rainy days, Ef/ET was 15.5%, and Ttot/ET was 78.0%, while Td/ET, Ti/ET and Ts/ET contributed 38.7%, 23.0% and 16.4%, respectively.In rainy days, Ef/ET could go low to 4.6%, Ec/ET reached 50.9%, and Ttot/ET decreased to 42.2%, in which Td/ET, Ti/ET and Ts/ET were 23.5%, 10.6% and 8.0%, respectively.These results represented that ET was dominated by T (specifically for Td) in non-rainy days. However, E (specifically for Ec) contributed the highest proportion of ET in rainy days. 94.7% of P returned to the atmosphere through ET during whole observation days, there into, T and E accounted for nearly 57% and 38%, respectively. Overall, without regard to rainfall events, ET had better correlation with net radiation at 23m height (Rn) than with VPD and Ttot owned similar correlations with both Rn and VPD, but Ef expressed opposite result with ET. This result demonstrated that Rn was obviously the main driver for ecosystem's energy cycle and material exchange, Ttot restrained by Rn and VPD at the same time, and Ef was more susceptible to VPD compared to Rn.
    ConclusionThe transpiration capacity of dominant trees of Larix gemelinii species was stronger than intermediate and suppressed trees. So that, forest transpiration upscale from the individual tree could be overestimated if this method only considers in situ measured Td (even including Ti with larger DBH) and ignores Ts. The actual error depends on the degree of forest differentiation and moisture income conditions. The meteorological condition of non-rainfall days is more propitious to the water-vapor exchange at vegetation-atmosphere interface, and the occurrence of rainfall will affect the distribution pattern of ecosystem ET.
  • [1]
    Schlesinger W H, Jasechko S. Transpiration in the global water cycle[J]. Agricultural and Forest Meteorology, 2014, 189(6): 115-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43a92230a6d9b8a4f9c94139e9bdffeb
    [2]
    Xiao J F, Sun G, Chen J Q, et al. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China[J].Agriculturaland Forest Meteorology, 2013, s182-183(22): 76-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bf5bf98fd07ab7f2930ba9f69004fcc
    [3]
    Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7445): 347-350. doi: 10.1038/nature11983
    [4]
    Sun X C, Onda Y, Kato H, et al. Partitioning of the total evapotranspiration in a Japanese cypress plantation during the growing season[J].Ecohydrology, 2014, 7(3): 1042-1053. doi: 10.1002/eco.v7.3
    [5]
    Zhang B Z, Xu D, Liu Y, et al. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China[J]. Agricultural and Forest Meteorology, 2016, 216: 1-12. doi: 10.1016/j.agrformet.2015.09.015
    [6]
    Sun X C, Onda Y, Otsuki K, et al. The effect of strip thinning on tree transpiration in a Japanese cypress (Chamaecyparis obtusa Endl.) plantation[J]. Agricultural and Forest Meteorology, 2014, 197: 123-135. doi: 10.1016/j.agrformet.2014.06.011
    [7]
    Sun X C, Onda Y, Otsuki K, et al. The effect of strip thinning on forest floor evaporation in a Japanese cypress plantation[J]. Agricultural and Forest Meteorology, 2016, 216: 48-57. doi: 10.1016/j.agrformet.2015.10.006
    [8]
    Yepez E A, Williams D G, Scott r L, et al. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology, 2003, 119(1-2): 53-68. doi: 10.1016/S0168-1923(03)00116-3
    [9]
    Fisher J B, Baldocchi D D, Misson L, et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007, 27(4): 597-610. doi: 10.1093/treephys/27.4.597
    [10]
    刘晨峰, 张志强, 孙阁, 等.基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应[J].植物生态学报, 2009, 33(4):706-718. doi: 10.3773/j.issn.1005-264x.2009.04.009

    Liu C F, Zhang Z Q, Sun G, et al. Quantifying evapotranspiration and biophysical regulations of a poplar plantation assessed by eddy covariance and sap-flow methods[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 706-718. doi: 10.3773/j.issn.1005-264x.2009.04.009
    [11]
    Tian F X, Zhao C Y, Feng Z D. Simulating evapotranspiration of Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains, northwestern China[J]. Journal of Arid Environments, 2011, 75(7): 648-655. doi: 10.1016/j.jaridenv.2011.02.001
    [12]
    Waterloo M J, Bruijnzeel L A, Vugts H F, et al. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions[J]. Water Resources Research, 1999, 35(7): 2133-2144. doi: 10.1029/1999WR900006
    [13]
    Lin Y, Wang G X, Guo J Y, et al. Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China[J]. Hydrological Processes, 2012, 26(20): 3032-3040. doi: 10.1002/hyp.v26.20
    [14]
    Bond-lamberty B, Gower S T, Amiro B, et al. Measurement and modelling of bryophyte evaporation in a boreal forest chronosequence[J]. Ecohydrology, 2011, 4(1): 26-35. doi: 10.1002/eco.v4.1
    [15]
    盛后财, 蔡体久, 李奕, 等.大兴安岭北部兴安落叶松林降雨截留再分配特征[J].水土保持学报, 2014, 28(6):101-105. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201406019

    Sheng H C, Cai T J, Li Y, et al. Rainfall redistribution in Larix gmelinii forest on Northern of Daxing'an Mountains, northeast of China[J].Journal of Soil and Water Conservation, 2014, 28(6):101-105. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201406019
    [16]
    Wilson K B, Hanson P J, Mulholland P J, et al. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology, 2001, 106(2): 153-168. doi: 10.1016/S0168-1923(00)00199-4
    [17]
    池波, 蔡体久, 满秀玲, 等.大兴安岭北部兴安落叶松树干液流规律及影响因子分析[J].北京林业大学学报, 2013, 35(4):21-26. http://j.bjfu.edu.cn/article/id/9894

    Chi B, Cai T J, Man X L, et al. Effects of influencing factors on stem sap flow in Larix gmelinii in northern Da Hinggan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(4):21-26. http://j.bjfu.edu.cn/article/id/9894
    [18]
    孙鹏森, 马履一, 王小平, 等.油松树干液流的时空变异性研究[J].北京林业大学学报, 2000, 22(5):1-6. doi: 10.3321/j.issn:1000-1522.2000.05.001

    Sun P S, Ma L Y, Wang X P, et al. Temporal and spacial variation of sap flow of Chinese pine (Pinus tabuliformix) [J]. Journal of Beijing Forestry University, 2000, 22(5):1-6. doi: 10.3321/j.issn:1000-1522.2000.05.001
    [19]
    张璇, 张会兰, 王玉杰, 等.缙云山典型树种树干液流日际变化特征及与气象因子关系[J].北京林业大学学报, 2016, 38(3):11-20. doi: 10.13332/j.1000-1522.20150389

    Zhang X, Zhang H L, Wang Y J, et al. Characteristics of daily sap flow for typical species in Jinyun Mountain of Chongqing in relation to meteorological factors[J]. Journal of Beijing Forestry University, 2016, 38(3):11-20. doi: 10.13332/j.1000-1522.20150389
    [20]
    陈宝强, 张建军, 张艳婷, 等.晋西黄土区辽东栎和山杨树干液流对环境因子的响应[J].应用生态学报, 2016, 27(3): 746-754. http://d.old.wanfangdata.com.cn/Periodical/yystxb201603010

    Chen B Q, Zhang J J, Zhang Y T, et al. Whole-tree sap flow of Quercus liaotungensis and Populus davidiana in response to environmental factors in the Loess Plateau area of western Shanxi Province, northern China [J]. Chinese Journal of Applied Ecology, 2016, 27(3): 746-754. http://d.old.wanfangdata.com.cn/Periodical/yystxb201603010
    [21]
    李振华, 王彦辉, 于澎涛, 等.华北落叶松液流速率的优势度差异及其对林分蒸腾估计的影响[J].林业科学研究, 2015, 28(1): 8-16. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501002

    Li Z H, Wang Y H, Yu P T, et al. Variation of sap flow density of Larix principis-rupprechtii with dominances and its impact on stand transpiration estimation [J]. Forest Research, 2015, 28(1): 8-16. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501002
    [22]
    刘家霖, 满秀玲, 胡悦.兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J].林业科学研究, 2016, 29(5): 726-734. doi: 10.3969/j.issn.1001-1498.2016.05.015

    Liu J L, Man X L, Hu Y. Response of tree sap flow of Larix gmelinii with various differentiation classes to multiple environmental factors [J]. Forest Research, 2016, 29(5): 726-734. doi: 10.3969/j.issn.1001-1498.2016.05.015
    [23]
    Soja A J, Tchebakova N M, French N H F, et al. Climate-induced boreal forest change: predictions versus current observations[J]. Global and Planetary Change, 2007, 56(3/4): 274-296. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027078691/
    [24]
    玉宝, 乌吉斯古楞, 王百田, 等.大兴安岭兴安落叶松(Larix gmelinii)天然林分级木转换特征[J].生态学报, 2008, 28(11): 5750-5757. doi: 10.3321/j.issn:1000-0933.2008.11.062

    Yu B, Wujisiguleng, Wang B T, et al.Analysis on classified stem transformation characteristic of Larix gmelinii natural forest at Daxingan Mountains [J]. Acta Ecologica Sinica, 2008, 28(11): 5750-5757. doi: 10.3321/j.issn:1000-0933.2008.11.062
    [25]
    玉宝, 乌吉斯古楞, 王百田, 等.兴安落叶松天然林树冠生长特性分析[J].林业科学, 2010, 46(5): 41-48. http://d.old.wanfangdata.com.cn/Periodical/lykx201005007

    Yu B, Wujisiguleng, Wang B T, et al.Analysis of crown growth characteristics in natural Larix gmelinii forests [J]. Scientia Silvae Sinicae, 2010, 46(5): 41-48. http://d.old.wanfangdata.com.cn/Periodical/lykx201005007
    [26]
    Van Wijk M T, Bouten W. Water and carbon fluxes above European coniferous forests modelled with artificial neural networks[J]. Ecological Modelling, 1999, 120(2/3): 181-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2032594c3aaa44fc6c6e7e03bd617ec4
    [27]
    Sinclair T R. A reminder of the limitations in using beer's law to estimate daily radiation interception by vegetation[J]. Crop Science, 2006, 46(6): 2343-2347. doi: 10.2135/cropsci2006.01.0044
    [28]
    Landsberg J J, Gower S T. Applications of physiological ecology to forest management[M]. San Diego:Academic Press, 1997:354.
    [29]
    谭正洪, 于贵瑞, 周国逸, 等.亚洲东部森林的小气候特征(1):辐射和能量的平衡[J].植物生态学报, 2015, 39(6): 541-553. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506001

    Tan Z H, Yu G R, Zhou G Y, et al. Microclimate of forests across East Asia biomes (1): radiation and energy balance[J]. Chinese Journal of Plant Ecology, 2015, 39(6): 541-553. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201506001
    [30]
    Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1/4): 223-243. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229230263/
    [31]
    Goulden M L, Munger J W, Fan S M, et al. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy[J]. Global Change Biology, 1996, 2(3): 169-182. doi: 10.1111-j.1365-2486.1996.tb00070.x/
    [32]
    徐自为, 刘绍民, 宫丽娟, 等.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展, 2008, 23(4): 357-370. doi: 10.3321/j.issn:1001-8166.2008.04.005

    Xu Z W, Liu S M, Gong L J, et al. A study on the data processing and quality assessment of the eddy covariance system[J]. Advances in Earth Science, 2008, 23(4): 357-370. doi: 10.3321/j.issn:1001-8166.2008.04.005
    [33]
    张彦群, 王传宽.北方和温带森林生态系统的蒸腾耗水[J].应用与环境生物学报, 2008, 14(6): 838-845. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200806020

    Zhang Y Q, Wang C K. Transpiration of boreal and temperate forests[J]. Chinese Journal of Applied & Environmental Biology, 2008, 14(6): 838-845. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200806020
    [34]
    Meinzer F C, Goldstein G, Jackson P, et al. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties[J]. Oecologia, 1995, 101(4): 514-522. doi: 10.1007/BF00329432
    [35]
    Lagergren F, Lindroth A. Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden[J]. Forest Ecology and Management, 2004, 188(1-3): 51-63. doi: 10.1016/j.foreco.2003.07.018
    [36]
    刘家霖, 王传宽, 张全智.不同分化等级兴安落叶松树干心材和边材空间变异[J].林业科学, 2014, 50(12): 114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201412016

    Liu J L, Wang C K, Zhang Q Z. Spatial variations in stem heartwood and sapwood for Larix gmelinii trees with various differentiation classes [J]. Scientia Silvae Sinicae, 2014, 50(12): 114-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201412016
    [37]
    O'brien J J, Oberbauer S F, Clark D B. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest[J].Plant, Cell & Environment, 2004, 27(5): 551-567. doi: 10.1111-j.1365-3040.2003.01160.x/
    [38]
    白岩, 朱高峰, 张琨, 等.基于树干液流及涡动相关技术的葡萄冠层蒸腾及蒸散发特征研究[J].生态学报, 2015, 35(23): 7821-7831. http://d.old.wanfangdata.com.cn/Periodical/stxb201523026

    Bai Y, Zhu G F, Zhang K, et al. Research of transpiration and evapotranspiration from a grapevine canopy combining the sap flow and eddy covariance techniques [J]. Acta Ecologica Sinica, 2015, 35(23): 7821-7831. http://d.old.wanfangdata.com.cn/Periodical/stxb201523026
    [39]
    Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies[J]. Tree Physiology, 1998, 18(8-9): 633-644. doi: 10.1093/treephys/18.8-9.633
    [40]
    Massonnet F, Bellprat O, Guemas V, et al. Using climate models to estimate the quality of global observational data sets[J].Science, 2016, 354: 425-455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b0c5ae97d08fd17adca62219db65f30
    [41]
    Deguchi A, Hattori S, Daikoku K, et al. Measurement of evaporation from the forest floor in a deciduous forest throughout the year using microlysimeter and closed-chamber systems[J]. Hydrological Processes, 2008, 22(18): 3712-3723. doi: 10.1002/hyp.v22:18
  • Related Articles

    [1]Song Shuo, Zhao Wanning, Li Shaoran, Wang Yafei, Yue Tianze, Jia Liming, Liu Hu. Spatio-temporal characteristics and influencing factors of evapotranspiration in Yinchuan City of northwestern China Based on MOD16[J]. Journal of Beijing Forestry University, 2024, 46(7): 18-26. DOI: 10.12171/j.1000-1522.20220100
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liang Chunxuan, Ma Jingyong, Yang Ruizhi, Wu Yajuan, Tian Yun, Jia Xin, Zha Tianshan, Yang Lin. Priestley-Taylor model coefficient in a typical Artemisia ordosica shrubland in Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 1-8. DOI: 10.13332/j.1000-1522.20180145
    [4]LIU Lu, JIA Guo-dong, YU Xin-xiao, ZHANG Yong-e. Daily variations of δ18O and its quantitative distinction in evapotranspiration components of Platycladus orientalis plantation during the rapid growth season in the mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2017, 39(12): 61-70. DOI: 10.13332/j.1000-1522.20170172
    [5]MU Yan-mei, LI Jun, TONG Xiao-juan, ZHANG Jin-song, MENG Ping, REN Bo. Evapotranspiration simulated by Penman-Monteith and Shuttleworth-Wallace models over a mixed plantation in the southern foot of the Taihang Mountain, northern China[J]. Journal of Beijing Forestry University, 2017, 39(11): 35-44. DOI: 10.13332/j.1000-1522.20170060
    [6]GAO Jun, WU Bin, MENG Ping. Transpiration of apricot trees and their relationship with rainfall and canopy micrometeorological factors.[J]. Journal of Beijing Forestry University, 2010, 32(3): 14-20.
    [7]YUAN Xiao-huan, , WU Ju-ying, SUN Lu, DUAN Liu-sheng, WANG Jian-zhong. Evapotranspiration of Dianthus chinensis at different irrigation levels[J]. Journal of Beijing Forestry University, 2008, 30(2): 77-81.
    [8]ZHANG Zhi-shan, ZHANG Xiao-you, TAN Hui-juan, HE Ming-zhu, ZHENG Jing-gang, LI Xin-rong. Measurement on the transpiration of xerophils in the desert area with steady state porometer and stem heat balance technique[J]. Journal of Beijing Forestry University, 2007, 29(1): 60-66. DOI: 10.13332/j.1000-1522.2007.01.011
    [9]DIAO Yi-wei, WANG An-zhi, JIN Chang-jie, GUAN De-xin, PEI Tie-fan. Simulation of evapotranspiration in broad-eaved and Korean pine mixed forest in Northeast China's Changbaishan Mountain using inverse Lagrangian dispersion analysis[J]. Journal of Beijing Forestry University, 2005, 27(6): 29-35.
    [10]TIAN Jing-hui, HE Kang-ning, WANG Bai-tian, ZHANG Wei-qiang, YIN Jing. Relationship between transpiration of Platycladus orientalis and environmental factors in semi-arid region on Loess Plateau[J]. Journal of Beijing Forestry University, 2005, 27(3): 53-56.
  • Cited by

    Periodical cited type(1)

    1. 伊丽茜,岳永杰,张军,舒洋,王雅倩. 额尔古纳市兴安落叶松中龄林植被碳储量研究. 现代园艺. 2021(23): 55-56+74 .

    Other cited types(6)

Catalog

    Article views (2134) PDF downloads (62) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return