Citation: | Liu Lu-lu, Lu Ting-ting, Wang Shuang, Li Mei-liang, Zhao Shuang-jing, Liu Ying-ying, Wei Zhi-gang. Effects of poplar PsnGA20ox1 overexpression on leaf development of tobacco[J]. Journal of Beijing Forestry University, 2018, 40(2): 22-30. DOI: 10.13332/j.1000-1522.20170245 |
[1] |
Hedden P, Kamiya Y. Gibberellin biosynthesis: enzymes, genes and their regulation[J]. Annual Review of Plant Physiology Plant Molecular Biology, 1997, 48: 431-460. doi: 10.1146/annurev.arplant.48.1.431
|
[2] |
MacMillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria[J]. Journal of Plant Growth Regulation, 2001, 20(4): 387-442. doi: 10.1007/s003440010038
|
[3] |
Xiao Y H, Ye Y F, Yi F, et al. Functional expression of the cotton gibberellic acid oxidase homologous gene GhGA20ox1 in tobacco[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32 (5): 563-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxb200605009
|
[4] |
邓伟, 吕立堂, 罗克明, 等.棉花GA20-氧化酶基因转毛白杨的研究[J].西北植物学报, 2008, 28(6):1095-1110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb200806004
Deng W, Lü L T, Luo K M, et al. Transformation of gibberellin 20-oxidase gene of cotton into Chinese white poplar[J].Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(6):1095-1110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbzwxb200806004
|
[5] |
Spielmeyer W, Ellis M H, Chandler P M. Semidwarf(sd-1), 'green revolution'rice, contains a defective gibberellin 20-oxidase gene[J].PNAS, 2002, 99(13):9043-9048. doi: 10.1073/pnas.132266399
|
[6] |
严远鑫, 安成才, 栗力.水稻赤霉素20-氧化酶(rga5)正、反义转化对水稻生物学性状的影响[J].科学通报, 2004, 48(4):358-363. doi: 10.3321/j.issn:0023-074X.2004.04.011
Yan Y X, An C C, Li L.Rice gibberellin 20-oxidase (rga5) sense, antisense transformation effect on biological character of rice[J].Chinese Science Bulletin, 2004, 48(4):358-363. doi: 10.3321/j.issn:0023-074X.2004.04.011
|
[7] |
谈心, 杨宏, 乔定君, 等.干扰烟草GA20-氧化酶siRNA植物表达载体的构建及矮化烟草的产生[J].应用与环境生物学报, 2008, 14(1):48-52. doi: 10.3321/j.issn:1006-687X.2008.01.009
Tan X, Yang H, Qiao D J, et al.Construction of siRNA plant expression vector interfered with GA20-oxidase and production of dwarf tobacco[J].Chinese Journal of Applied and Environmental Biology, 2008, 14(1):48-52. doi: 10.3321/j.issn:1006-687X.2008.01.009
|
[8] |
Jeon H W, Cho J S, Park E J, et al. Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase1 from Pinus densiflora, improves woody biomass production in a hybrid poplar[J]. Plant Biotechnology Journal, 2015, 1:1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1aa18e3a399b1685d61dae98b9208717
|
[9] |
冯怡.棉花GA20-氧化酶基因GhGA20ox1的超量表达及其对番茄果实发育的影响[D].重庆: 西南农业大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10625-2005089809.htm
Feng Y. Overexpression of a cotton GA 20-oxidase gene(GhGA20ox1) and its effects on tomato fruit develpoment[D]. Chongqing: Southwest Agriculture University, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10625-2005089809.htm
|
[10] |
Qiao F, Chen Z. Alteration of rice growth and development via antisense expression of OsGA20ox2 gene[J]. African Journal of Biotechnology, 2013, 12(25):3898-3904.
|
[11] |
王月华.结缕草GA20氧化酶基因的克隆及遗传转化研究[D].北京: 北京林业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007077347.htm
Wang Y H. Studied on cloning and genetic transformation of gibberellin 20 oxidase gene from zoysiagrass(Zoysia japonica Steud.)[D].Beijing: Beijing Forestry University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10022-2007077347.htm
|
[12] |
张力杰, 张凯旋, 魏志刚.小黑杨PnsGA20ox1基因的克隆及功能分析[J].南京林业大学学报(自然科学版), 2013, 37(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201306003
Zhang L J, Zhang K X, Wei Z G. Cloning and function analysis of PsnGA20ox1 gene in Populus simonii×P.nigra[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(6):11-16. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201306003
|
[13] |
张志良, 瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社, 2003.
Zhang Z L, Qu W J.Experimental guide for plant physiology[M].Beijing:Higher Education Press, 2003.
|
[14] |
张容, 郑彦峰, 吴瑶, 等.一种简单有效的植物RNA提取方法[J].遗传, 2006, 28(5):583-586. doi: 10.3321/j.issn:0253-9772.2006.05.015
Zhang R, Zheng Y F, Wu Y, et al. A simple and efficient method for preparation of plant RNAs[J]. Hereditas (Beijing), 2006, 28(5):583-586. doi: 10.3321/j.issn:0253-9772.2006.05.015
|
[15] |
Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J].Nature, 2005, 436:866-870. doi: 10.1038/nature03835
|
[16] |
Shpak E D, McAbee J M, Pillitteri L J, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Science, 2005, 309:290-293. doi: 10.1126/science.1109710
|
[17] |
Umbrasaite J, Schweighofer A, Kazanaviciute V, et al. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis[J]. PLoS One, 2010, 5(12): e15357. doi: 10.1371/journal.pone.0015357
|
[18] |
Hara K, Kajita R, Torii K, et al. The secretory peptide gene EPF1 enforces the stomatalone-cell-spacing rule[J]. Genes Dev, 2007, 21(14): 1720-1725. doi: 10.1101/gad.1550707
|
[19] |
Hara K, Yokoo T, Kajita R, et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves[J]. Plant Cell Physiol, 2009, 50(6): 1019-1031. doi: 10.1093/pcp/pcp068
|
[20] |
Sugano S S, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis[J]. Nature, 2010, 463: 241-244. doi: 10.1038/nature08682
|
[21] |
Liu T, Ohashi-Ito K, Bergmann D C. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses[J]. Development, 2009, 136(13): 2265-2276. doi: 10.1242/dev.032938
|
[22] |
Kanaoka M M, Pillitteri L J, Fujii H, et al.SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation[J]. Plant Cell, 2008, 20(7): 1775-1785. doi: 10.1105/tpc.108.060848
|
[23] |
赵学彩.杨树D类周期蛋白基因Poptr; CYCD1;1的RNAi与Poptr; CYCD3; 3的过表达研究[D].哈尔滨: 东北林业大学, 2014. http://cdmd.cnki.com.cn/article/cdmd-10225-1014408984.htm
Zhao X C. Characterization of expression of D-type cyclin gene Poptr; CYCD1;1 and Poptr; CYCD3;3 from poplar[D]. Harbin: Northeast Forestry University, 2014. http://cdmd.cnki.com.cn/article/cdmd-10225-1014408984.htm
|
[24] |
Fagoaga C. Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture[J].Journal of Experimental Botany, 2007, 58(6):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=610b9a1037dc001c4f0d395912aac5f6
|
[25] |
Biemelt S.Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J].Plant Physiology, 2004, 135 (1):254-265. doi: 10.1104/pp.103.036988
|
[26] |
蒋超, 卢天成.赤霉素在非生物胁迫中的作用[J].生物技术通报, 2016, 32(5):11-15. http://d.old.wanfangdata.com.cn/Periodical/swjstb201605002
Jiang C, Lu T C. The function of gibberellins signaling in responses to abiotic stresses[J]. Biotechnology Bulletin, 2016, 32(5):11-15. http://d.old.wanfangdata.com.cn/Periodical/swjstb201605002
|
[27] |
Vidal A M, Gisbert C, Talón M, et al. The ectopic overexpression of a citrus gibberellin 20-oxidase enhances the non-13-hydroxylation pathway of gibberellin biosynthesis and induces an extremely elongated phenotype in tobacco[J]. Physiologia Plantarum, 2011, 112(2):251-260. http://cn.bing.com/academic/profile?id=bc9f85eb221dd9d1f7d845615bcd5e26&encoded=0&v=paper_preview&mkt=zh-cn
|
[28] |
Rodrigo M J, Garcia Martinez J L, Santes C. The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds[J]. Planta, 1997, 201(6):446-455 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0211875857
|
[29] |
Jeremy P, Phillips C A L, Croker S J, et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes[J]. Plant Journal, 1999, 17(5):547-556. doi: 10.1046/j.1365-313X.1999.00410.x
|
[30] |
Jordan E T. Phytochrome A overexpression in transgenic tobacco (correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuatted gibberellin levels)[J]. Plant Physiol, 1995, 107:797-805. doi: 10.1104/pp.107.3.797
|
[31] |
Vidal A M, Bencheikh W, Talón M, et al. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid[J]. Planta, 2003, 217(3):442-448. doi: 10.1007/s00425-003-0999-2
|
[32] |
Eriksson M E. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length[J]. Nature Biotechnology, 2000, 18:784-788. doi: 10.1038/77355
|
[33] |
Saibo N. Growth and stomata development of Arabidopsis are controlled by gibberellins and modulated by ethylene and auxins[J]. The Plant Journal, 2003, 33:989-1000. doi: 10.1046/j.1365-313X.2003.01684.x
|
[34] |
Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants[J]. Plant Physiology, 2004, 135:254-265. doi: 10.1104/pp.103.036988
|
[35] |
Kim T H. Guard cell signal transduction network: advance in understanding abscisic acid, CO2, and Ca+ signaling[J]. Annual Review of Plant Biology, 2010, 61:561-591. doi: 10.1146/annurev-arplant-042809-112226
|
[36] |
Gudesblat.SPEECHLESS integrates brassinosteroid and stomatal signaling pathways[J].Nature Cell Biology, 2012, 14(5):548-554. doi: 10.1038/ncb2471
|
[37] |
Kim T H. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway[J]. Nature, 2012, 482:419-422. doi: 10.1038/nature10794
|
[38] |
Xu Z, Zhou G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in grass[J]. Journal of Experimenal Botany, 2008, 59:3317-3325. doi: 10.1093/jxb/ern185
|
[39] |
Zhang J Y. Auxin inhibits stomatal development through MONOPTEROS repression of mobile peptide gene STOLAGEN in mesophyll[J]. PNAS, 2014, 111(29):3015-3023. doi: 10.1073/pnas.1400542111
|
[40] |
张彤, 赵琳.植物DELLA蛋白的功能及其在大豆中的研究[J].大豆科学, 2011, 30(5):874-879. http://d.old.wanfangdata.com.cn/Periodical/ddkx201105035
Zhang T, Zhao L. Function of plant DELLA protein and its research advancement in soybean[J]. Soybean Science, 2011, 30(5):874-879. http://d.old.wanfangdata.com.cn/Periodical/ddkx201105035
|
[41] |
Yang T, Davies P J, Reid J B. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas[J]. Plant Physiol, 1996, 110:1029-1034. doi: 10.1104/pp.110.3.1029
|
[1] | Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. DOI: 10.12171/j.1000-1522.20210055 |
[2] | Wang Shuli, Hao Yuzhuo, Zhou Lei, Wu Hui. Seasonal variations of leaf nutrient element concentrations and their stoichiometric characteristics in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2018, 40(10): 24-33. DOI: 10.13332/j.1000-1522.20180170 |
[3] | WANG Dan, AN Yi, HAN Xiao, ZHOU Yang-yan, WANG Hou-ling, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Over-expression of RPEase gene promotes the growth and development of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2016, 38(5): 67-76. DOI: 10.13332/j.1000-1522.20150507 |
[4] | YAO Jing-han, LI Wei. Morphological and anatomical features during the formation of adventitious roots of sea buckthorn by micro-cuttage multiplication[J]. Journal of Beijing Forestry University, 2013, 35(2): 130-133. |
[5] | ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41. |
[6] | MA Ni, SUN Zhen-yuan, LIU Qing-hua, HAN Lei, JU Guan-sheng, QIAN Yong-qiang, LIU Jun-xiang. Seasonal variation of leaf anatomical structure of Euonymus japonicus ‘Cu Zhi’[J]. Journal of Beijing Forestry University, 2011, 33(6): 112-118. |
[7] | XU Xiao, XU Qian, ZHANG Kai, XU Ji-chen. Advancements in expansin genes of plants.[J]. Journal of Beijing Forestry University, 2010, 32(5): 154-162. |
[8] | SHOU Hai-yang, MA Qing-wen, LIU Di, LI Feng-lan. Cytological observations of microsporogenesis and male gametophyte development of Aquilaria sinensis (Lour.) Spreng.[J]. Journal of Beijing Forestry University, 2010, 32(4): 92-96. |
[9] | ZHANG Zhang-de. Present situation and development policies of rosin industry in China[J]. Journal of Beijing Forestry University, 2008, 30(3): 147-152. |
[10] | YIN Zeng-fang, FAN Ru-wen. Phenomena of protoplasm components' selective autolyzing in the development of secondary phloem sieve elements in Populus deltoides[J]. Journal of Beijing Forestry University, 2007, 29(3): 1-7. DOI: 10.13332/j.1000-1522.2007.03.001 |
1. |
张加强,刘慧春,周江华,谭晨,朱开元. 植物赤霉素氧化酶GA20ox基因的生物信息学分析. 分子植物育种. 2019(15): 4986-5002 .
![]() | |
2. |
李飞鸿,侯应军,李雪涵,余心怡,渠慎春. 苹果赤霉素氧化酶基因MdGA2ox8的克隆及功能分析. 中国农业科学. 2018(22): 4339-4351 .
![]() |