Citation: | Yu Zhenxu, Qin Guanghua, Song Yumin, Qiao Yuling, Jiang Yuezhong, Wang Huatian. Collection and genetic diversity analysis of wild germplasm in Salix matsudana[J]. Journal of Beijing Forestry University, 2018, 40(10): 67-76. DOI: 10.13332/j.1000-1522.20170330 |
[1] |
王战, 方振富.中国植物志第二十卷第二分册[M].北京:科学出版社, 1984: 95-100.
Wang Z, Fang Z F. Flora of China Tomas 20(2)[M]. Beijing: Science Press, 1984: 95-100.
|
[2] |
Hamrick J L, Godt M J W, Sherman-Broyles S L. Factors influencing levels of genetic diversity in woody plant species[J].Population Genetics of Forest Trees, 1992, 42: 95-124. doi: 10.1007/978-94-011-2815-5
|
[3] |
Rodríguez-Quilón I, Santos-del-Blanco L, Serra-Varela M J, et al. Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species[J]. Ecological Applications, 2016, 26(7): 2254-2266. doi: 10.1002/eap.1361
|
[4] |
Gaoue O G, Lemes M R, Ticktin T, et al. Non-timber forest product harvest does not affect the genetic diversity of a tropical tree despite negative effects on population fitness[J]. Biotropica, 2014, 46(6): 756-762. doi: 10.1111/btp.12145
|
[5] |
Trybush S O, Jahodová Š, Čížková L, et al. High levels of genetic diversity in Salix viminalis of the Czech Republic as revealed by microsatellite markers[J]. Bioenergy Research, 2012, 5(4): 969-977. doi: 10.1007/s12155-012-9212-4
|
[6] |
Zhai F, Mao J, Liu J, et al. Male and female subpopulations of Salix viminalis present high genetic diversity and high long-term migration rates between them[J]. Frontiers in Plant Science, 2016, 7:1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004616898
|
[7] |
Rönnberg-Wästljung A C, Karp A, Hanley S J. Genetic diversity, population structure and phenotypic variation in European Salix viminalis L.(Salicaceae)[J]. Tree Genetics & Genomes, 2014, 10(6): 1595-1610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdf05525a8ba5a5a59644fb4c2076c7b
|
[8] |
Berlin S, Lagercrantz U, Arnold S, et al. High-density linkage mapping and evolution of paralogs and orthologs in Salix and Populus[J]. BMC Genomics, 2010, 11(1):129-143. doi: 10.1186/1471-2164-11-129
|
[9] |
Trybush S, Jahodová Š, Macalpine W, et al Genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species[J]. Bioenergy Research, 2008, 1: 67-79. doi: 10.1007/s12155-008-9007-9
|
[10] |
Argus G W, Mcjannet C L. A taxonomic reconsideration of Salix taxifolia sensu lato (Salicaceae)[J]. Brittonia, 1992, 44(4): 461-474. doi: 10.2307/2807196
|
[11] |
Dorn R D. A taxonomic study of Salix sections Mexicanae and Viminella subsection Sitchenses (Salicaceae) in North America[J]. Brittonia, 2000, 52(1): 1-19. doi: 10.2307/2666489
|
[12] |
Wu J, Nyman T, Wang D C, et al. Phylogeny of Salix subgenus Salix s.l.(Salicaceae): delimitation, biogeography, and reticulate evolution[J]. BMC Evolutionary Biology, 2015, 15(1): 1-13. doi: 10.1186/s12862-015-0311-7
|
[13] |
Skvortsov A K.Willows of Russia and adjacent countries: taxonomical and geographical revision[M]. Joensuu:University of Joensuu Press, 1999.
|
[14] |
Park J I, Choi G E, Nam J I, et al. Genetic diversity of Salix koreensis based on inter-simple sequence repeat (ISSR) in South Korea[J/OL]//BMC Proceedings, 2011, 5(Suppl.7): P15[2017-09-24]. https://doi.org/10.1186/1753-6561-5-S7-P15.
|
[15] |
Kuzovkina Y A. Establishment and maintenance of living structures made of willow (Salix) stems[J]. Arboriculture & Urban Forestry, 2008, 34(5): 290-295. https://www.researchgate.net/publication/242614548_Establishment_and_Maintenance_of_Living_Structures_Made_of_Willow_Salix_Stems
|
[16] |
Ball J, Carle J, Del Lungo A. Contribution of poplars and willows to sustainable forestry and rural development[J]. Unasylva, 2005, 56(21): 3-9. http://cn.bing.com/academic/profile?id=40b6b491aa6eef08f2c07805eb9b7ffc&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
Tsarouhas V, Gullberg U, Lagercrantz U. Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix[J]. Theoretical and Applied Genetics, 2004, 108(7): 1335-1342. doi: 10.1007/s00122-003-1544-1
|
[18] |
Li C, Wu N, Liu S. Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia[J]. Biologiaplantarum, 2005, 49(1): 65-71. doi: 10.1007%2Fs10535-005-5071-6
|
[19] |
Rönnberg-Wästljung A C, Glynn C, Weih M. QTL analyses of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes[J]. Theoretical and Applied Genetics, 2005, 110(3): 537-549. doi: 10.1007/s00122-004-1866-7
|
[20] |
Nakai A, Yurugi Y, Kisanuki H. Stress responses in Salix gracilistyla cuttings subjected to repetitive alternate flooding and drought[J]. Trees, 2010, 24(6): 1087-1095. doi: 10.1007/s00468-010-0481-2
|
[21] |
Qiao G R, Zhang X G, Jiang J, et al. Comparative proteomic analysis of responses to salt stress in Chinese willow (Salix matsudana Koidz)[J]. Plant Molecular Biology Reporter, 2014, 32(4): 814-827. doi: 10.1007/s11105-013-0689-6
|
[22] |
Zhou J, Liu M, Jiang J, et al. Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress[J]. Molecular Biology Reports, 2012, 39(9): 8645-8654. doi: 10.1007/s11033-012-1719-4
|
[23] |
Yang J L, Chen Z, Wu S, et al. Over expression of the Tamarix hispida ThMT3 gene increases copper tolerance and adventitious root induction in Salix matsudana Koidz[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 121(2): 469-479. doi: 10.1007/s11240-015-0717-3
|
[24] |
徐刚标.植物群体遗传学[M].北京:科学出版社, 2009: 189-251.
Xu G B. Population genetics of plants[M]. Beijing: Science Press, 2009:189-251.
|
[25] |
Frankham R.保育遗传学导论[M].黄宏文, 康明, 译.北京: 科学出版社, 2005.
Frankham R. Introduction to conservation genetics[M]. Huang H W, Kang M, trans. Beijing: Science Press, 2005.
|
[26] |
Griffiths A J F. Introduction to genetic analysis[M]. New York: W.H. Freeman, 2005: 198-209.
|
[27] |
贾会霞, 吴立栓, 胡建军, 等.柳树种质资源遗传多样性和亲缘关系的CE-AFLP分析[J].林业科学, 2013, 49(6): 37-44. http://d.old.wanfangdata.com.cn/Periodical/lykx201306006
Jia H X, Wu L S, Hu J J, et al. Genetic diversity and genetic relationship of Salix germplasms revealed by CE-AFLP analysis[J]. Scientia Silvae Sinicae, 2013, 49(6):37-44. http://d.old.wanfangdata.com.cn/Periodical/lykx201306006
|
1. |
何旭东,隋德宗,王红玲,黄瑞芳,郑纪伟,王保松. 中国柳树遗传育种研究进展. 南京林业大学学报(自然科学版). 2022(06): 51-63 .
![]() | |
2. |
陈存,丁昌俊,黄秦军,张静,刘宁,李波,李政宏,苏晓华. 美洲黑杨表型和生理性状多样性及群体结构分析. 北京林业大学学报. 2021(06): 1-12 .
![]() | |
3. |
侯庚. 柳树种质资源研究进展. 安徽农业科学. 2020(18): 8-10 .
![]() |