• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yixin, Ma Chao, Yang Hailong, Ni Shubin. Causes and dynamic characteristics of debris flow disaster in Longtangou Watershed, Miyun County of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(7): 73-84. DOI: 10.13332/j.1000-1522.20170350
Citation: Zhang Yixin, Ma Chao, Yang Hailong, Ni Shubin. Causes and dynamic characteristics of debris flow disaster in Longtangou Watershed, Miyun County of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(7): 73-84. DOI: 10.13332/j.1000-1522.20170350

Causes and dynamic characteristics of debris flow disaster in Longtangou Watershed, Miyun County of Beijing

More Information
  • Received Date: September 25, 2017
  • Revised Date: December 25, 2017
  • Published Date: June 30, 2018
  • ObjectiveSince 2011, several debris flow events occurred in Longtangou Watershed, Miyun County of Beijing, which pose a heavy threaten to the local inhabitants and economic development. After the debris flow event on August 12, 2016, the debris flow in Aiwayu and Damuyu catchments were investigated to examine their formation and dynamic characteristics, aiming to provide theoretical basis for the prevention and treatment of single channel debris flow in the area.
    MethodOn the basis of field investigation, laboratory tests, remote sensing maps and rainfall data, the particle composition of debris flow and changes of velocity and peak flow at several cross sections were analyzed.
    Result(1) From 2012 to 2016, the area of material source body increased by 11.12 and 4.41 times compared with previous conditions in the Aiwayu and Damuyu catchments, respectively. (2) In 2016, the maximum hour rainfall was 47.0% of the accumulative rainfall. Compared with the debris flow event in 2011, the antecedent precipitation was less and the triggering rainfall intensity was 2.87 times of that in 2011. (3) The debris flow density of Aiwayu and Damuyu catchments was 1.95 and 1.88 g/cm3, and the content of clay particles was 0.02% and 0.05%, respectively. (4) Scale distribution results showed that the R2 ranged in 0.853 1-0.959 2, μ ranged in 0.019 1-0.033 8, Dc ranged in 10.31-10.99. (5) Since the confluence from Aiwayu tributary, the flow velocity and discharge increased by 0.21 and 1.67 times, respectively; after flowing through Pinus tabuliformis forest, the velocity decreased by 22.9%, the discharge decreased by 86.2%, and the average particle diameter of the debris flow reduced by 53.0%. The flow velocity and discharge in Damuyu Catchment increased by 0.16 and 7.71 times, respectively after the debris flow passing over the artificial dam.
    Conclusion(1) Since 2012, the body area of material source in Aiwayu and Damuyu catchments increased year by year, which is the material source condition causing debris flow here again. (2) The debris flow in this area was mainly triggered by a short-time, high-intensity rainstorm. If the antecedent precipitation was abundant, the triggering rainfall intensity decreased. (3) Both of the debris flow in the two catchments belong to high-density and low-viscous flows with abundant gravels and few clay. (4) The scale distribution had a high fitting degree for Aiwayu and Damuyu catchments. μ < 0.05 verified the conclusion that the debris flow in two catchments had high density. Low viscosity was the main reason for low Dc. (5) In Aiwayu Catchment, the discharge of debris flow reaching peak value in short time was resulted from the confluence of debris flow in tributary to main ditch. Pinus tabuliformis forest in the channel had reduction effects on velocity and discharge of debris flow, and filtering effects on large particulate matter. While in Damuyu Catchment, the discharge of debris flow reaching peak value in short time was resulted from rockfill dam break in the channel.
  • [1]
    Ma C, Wang Y J, Du C, et al. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing[J]. Geomorphology, 2016, 273:323-334. doi: 10.1016/j.geomorph.2016.08.027
    [2]
    Li Y M, Ma C, Wang Y J. Landslides and debris flows caused by an extreme rainstorm on 21 July 2012 in mountains near Beijing, China [J]. Bulletin of Engineering Geology and the Environment, 2017, 3:1-16. doi: 10.1007/s10064-017-1187-0
    [3]
    韦京莲, 赵波, 董桂芝.北京山区近代泥石流活动规律及暴发周期分析[J].中国地质灾害与防治学报, 1994, 5(4):48-53. http://www.cnki.com.cn/Article/CJFDTotal-ZGDH199404007.htm

    Wei J L, Zhao B, Dong G Z. Relationship between activity periods of modern mud-rock flow and storm in the mountain areas of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(4):48-53. http://www.cnki.com.cn/Article/CJFDTotal-ZGDH199404007.htm
    [4]
    涂剑, 马超, 杨海龙, 等.北京山区暴雨泥石流激发雨量条件[J].中国水土保持科学, 2017, 15(5):103-110. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201705013

    Tu J, Ma C, Yang H L, et al. Rainfall condition of triggering debris flows in Beijing mountain regions[J]. Science of Soil and Water Conservation, 2017, 15(5):103-110. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201705013
    [5]
    白利平, 孙佳丽, 张亮, 等.基于GI S的北京地区泥石流危险度区划[J].中国地质灾害与防治学报, 2008, 19(2):12-15. doi: 10.3969/j.issn.1003-8035.2008.02.003

    Bai L P, Sun J L, Zhang L, et al. GIS-based risk factors zoning of debris flow in Beijing Region[J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(2):12-15. doi: 10.3969/j.issn.1003-8035.2008.02.003
    [6]
    韦京莲, 赵波, 董桂芝.北京山区泥石流降雨特征分析及降雨预报初探[J].中国地质灾害与防治学报, 1994, 5(1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500246860

    Wei J L, Zhao B, Dong G Z. Analysis of characters of debris-flow, rainfall and first study on forecast of rainfall in mountainous terrrain of Beijing[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500246860
    [7]
    张嫱, 马超, 杨海龙, 等.北京山区典型低频泥石流特征及危险性研究[J].北京林业大学学报, 2015, 37(12):92-99. doi: 10.13332/j.1000-1522.20150177

    Zhang Q, Ma C, Yang H L, et al. Characteristics of low frequency debris flow and risk analysis in Beijing mountainous region[J]. Journal of Beijing Forestry University, 2015, 37(12):92-99. doi: 10.13332/j.1000-1522.20150177
    [8]
    王礼先, 于志民.山洪及泥石流灾害预报[M].北京:中国林业出版社, 2001:26-35, 121-126.

    Wang L X, Yu Z M. Mountain flood and debris flow disaster prediction [M]. Beijing:China Forestry Publishing House, 2001:26-35, 121-126.
    [9]
    Jibson R. Debris flow in southern Puerto Rico[J]. Geological Society of America, Special Paper, 1989, 236:29-55. doi: 10.1130/SPE236
    [10]
    李金海, 余新晓, 谢宝元, 等.北京山洪泥石流[M].北京:中国林业出版社, 2007:16-55.

    Li J H, Yu X X, Xie B Y, et al. Floods and mudslides in Beijing mountain [M]. Beijing:China Forestry Publishing House, 2007:16-55.
    [11]
    中国科学院兰州冰川冻土研究所.甘肃泥石流[M].北京:人民交通出版社, 1982.

    Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences. Debris flows in Gansu Province[M]. Beijing:China Communications Press, 1982.
    [12]
    北京市水务局.北京市水文手册-第一分册(暴雨图集)[M].北京: 北京市水务局, 1999: 105-122 (内部使用).

    Beijing Water Affairs Bureau. Beijing hydrological handbook-the first volume(Rainstorm atlas)[M].Beijing: Beijing Water Affairs Bureau, 1999: 105-122(internal use).
    [13]
    康志成, 李焯芬, 马蔼乃, 等.中国泥石流研究[M].北京:科学出版社, 2004:159-221.

    Kang Z C, Li Z F, Ma A N, et al. Debris-flow research in China[M]. Beijing: Science Press, 2004:159-221.
    [14]
    李泳, 陈晓清, 胡凯衡, 等.泥石流颗粒组成的分形特征[J].地理学报, 2005, 60(3):495-502. doi: 10.3321/j.issn:0375-5444.2005.03.016

    Li Y, Chen X Q, Hu K H, et al. Fractality of grain composition of debris flows[J]. Acta Geographica Sinica, 2005, 60(3):495-502. doi: 10.3321/j.issn:0375-5444.2005.03.016
    [15]
    Li Y, Chen X Q, Hu K H, et al. Fractality of grain composition of debris flows [J]. Journal of Geographical Sciences, 2005, 15(3):353-359. doi: 10.1007/BF02837523
    [16]
    李泳, 谢江, 周小军, 等.泥石流颗粒的标度分布[J].四川大学学报(工程科学版), 2013, 45(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201301001

    Li Y, Xie J, Zhou X J, et al. A scaling distribution for grain composition of debris flows[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201301001
    [17]
    陈宁生, 杨成林, 周伟, 等.泥石流勘查技术[M].北京:科学出版社, 2011:138-141.

    Chen N S, Yang C L, Zhou W, et al. Investigation technology for debris flows[M]. Beijing: Science Press, 2011:138-141.
    [18]
    康志成.我国泥石流流速研究与计算方法[J].山地研究, 1987(4):249-250. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198704011.htm

    Kang Z C. A velocity research of debris flow and its calculating method in China[J]. Mountain Research, 1987(4):249-250. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYA198704011.htm
    [19]
    谢洪, 钟敦伦, 韦方强, 等.北京山区泥石流的分类与类型[J].山地学报, 2004, 22(2):212-219. doi: 10.3969/j.issn.1008-2786.2004.02.013

    Xie H, Zhong D L, Wei F Q, et al. Classification of debris flow in the mountains of Beijing[J]. Journal of Mountain Science, 2004, 22(2):212-219. doi: 10.3969/j.issn.1008-2786.2004.02.013
  • Related Articles

    [1]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Yu Haiou, Zheng Jun, Zhang Tianxiang. DBH class structure and arbor biomass of Juglans mandshurica secondary forest[J]. Journal of Beijing Forestry University, 2022, 44(1): 29-37. DOI: 10.12171/j.1000-1522.20200348
    [2]Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. DOI: 10.12171/j.1000-1522.20200065
    [3]Chen Bei-bei, Wang Kai, Ni Rui-qiang, Cheng Yan-xia. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68-75. DOI: 10.13332/j.1000-1522.20170370
    [4]SUN Yue, XIA Fu-cai, HE Huai-jiang, LIU Bao-dong, WANG Ge-rong, LI Liang. Community structure features of the larch-birch secondary forest on the northeastern slope of Changbai Mountain, Northeast China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 28-38. DOI: 10.13332/j.1000-1522.20160088
    [5]WANG Xin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, WANG Guo-hang, DENG Hong-ping. Community structure and population regeneration of an endangered plant, Thuja sutchuenensis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 28-37. DOI: 10.13332/j.1000-1522.20160028
    [6]L&#xDC, Xun, YANG Shuang-bao, LIU Wen-zhen, GUO Xiao-long, LI An-min, YUAN Yi-chao. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province.[J]. Journal of Beijing Forestry University, 2015, 37(5): 11-18. DOI: 10.13332/j.1000-1522.20140238
    [7]LUO Zong-shi, XIANG Cheng-hua, ZHANG Lu, XIE Da-jun, LUO Xiao-hua. Spatial distribution of fine roots and underground competition between Chinese prickly ash (Zanthoxylum bungenum) and weeds in Chinese prickly ash plantation[J]. Journal of Beijing Forestry University, 2010, 32(2): 86-91.
    [8]HAN Lu, WANG Hai-zhen, PENG Jie, LIANG Ji-ye, MA Chun-hui. Size-class structure and distribution pattern of Populus euphratica Oliv. in different habitats.[J]. Journal of Beijing Forestry University, 2010, 32(1): 7-12.
    [9]MAO Lei, , WANG Dong-mei, YANG Xiao-hui, YU Hong. Spatial patterns of young Pinus sylvestris var. mongolica saplings and their regeneration analysis in different stands of Inner Mongolia, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 71-77.
    [10]MA Yu-fei, LI Jun-qing. Population structure of Davidia involucrate in Mt.Seven-sister Nature Reserve of central China’s Hubei Province[J]. Journal of Beijing Forestry University, 2005, 27(3): 12-16.
  • Cited by

    Periodical cited type(62)

    1. 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型. 林业科学. 2025(01): 57-69 .
    2. 衣娜娜,毕力格,史金丽,蔡敏,许志丽,郑凤杰,丽娜. 内蒙古大兴安岭飞机冷云增雨潜势预报模型. 干旱区研究. 2025(03): 409-419 .
    3. 王伟武,伏添乐,陈欢. 基于PLUS-InVEST模型的长三角城市群碳储量时空演变与预测. 环境科学. 2025(04): 1937-1950 .
    4. 徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
    5. 张圆圆,龙勤. 云南省森林净碳储量估算及影响因素分析——基于碳源和碳汇双重角度. 绿色科技. 2024(01): 227-231 .
    6. 汪宗顺,张海鹏,岳超,杨红强,张寒. 造林增汇是实现碳中和的成本有效途径吗?——以西北地区为例. 自然资源学报. 2024(03): 731-748 .
    7. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    8. 杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
    9. 于鲁冀,张亚慧,樊雷,王莉,刘莹莹. 河南省森林固碳量与碳汇价值评估. 郑州大学学报(工学版). 2024(03): 7-13 .
    10. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    11. 李林,赵毅,温智峰,刘佳润,魏识广,周景钢,冯嘉谊. 南亚热带常绿阔叶林地上碳储量空间分布特征及其影响因素. 生态学报. 2024(11): 4687-4697 .
    12. 马振华. 基于第7至9次森林资源清查的宁夏森林碳储量动态变化特征. 陕西林业科技. 2024(03): 39-45 .
    13. 郭同方,吴水荣,张超,苏秦. 重点国有林区森林碳储量动态变化及增汇策略分析——以龙江森工为例. 江西农业大学学报. 2024(03): 582-596 .
    14. 贺晨瑞,庞丽峰,谭炳香,黄逸飞,孙学霞. 基于遥感的北京市森林地上碳储量监测. 西北林学院学报. 2024(03): 162-170+265 .
    15. Zhencan ZHENG,Liuwen ZHUANG,Guofang MIAO,Han LIU,Zhiqiang CHENG,Wenyu LI,Rong SHANG,Peng GONG,Jing Ming CHEN. Elevational distribution of forests and its spatiotemporal dynamics in subtropical China from 2000 to 2019. Science China Earth Sciences. 2024(08): 2563-2582 .
    16. 郑振灿,庄留文,缪国芳,刘涵,程志强,李纹宇,商荣,宫鹏,陈镜明. 中国亚热带地区2000~2019年森林海拔分布特征及其时空动态. 中国科学:地球科学. 2024(08): 2604-2624 .
    17. 张亮. 韶关市森林植被碳储量与碳密度动态研究. 林业与环境科学. 2024(05): 88-94 .
    18. 范彩慧,段成波,龙德增,赵润华. 保山市森林生物质碳储量分析. 绿色科技. 2024(20): 68-73 .
    19. 胡兴波,张月,胡长江,李慧波,王光鑫. 西南地区常见林木的固碳经济效益分析. 农村科学实验. 2024(23): 114-116 .
    20. 曹爱平,罗雷,王晓荣,徐立,郑晓敏. 基于湖北第五次森林资源普查数据的森林碳储量研究. 湖北林业科技. 2024(06): 1-6 .
    21. 王媛媛,刘可欣,张湘婕,王艺璇,赵俊玮,徐连杰,郭婷婷,王天意,任志彬,代新竹. 城市森林碳汇估算计量——以长春市为例. 中国城市林业. 2024(06): 116-122 .
    22. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    23. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    24. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    25. 朱建华,田宇,李奇,刘华妍,郭学媛,田惠玲,刘常富,肖文发. 中国森林生态系统碳汇现状与潜力. 生态学报. 2023(09): 3442-3457 .
    26. 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力. 林业科学. 2023(03): 54-64 .
    27. 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学. 2023(03): 12-20 .
    28. 刘川. 利用森林资源一类清查数据计算活立木蓄积量的方法及应用研究. 山东林业科技. 2023(03): 69-72 .
    29. 冯源,王连晶. 县域尺度乔木林碳储量及碳汇特征分析——以马关县为例. 西部林业科学. 2023(03): 152-159 .
    30. 罗佩文,熊小雨,刘冰琳. 基于机器学习和生长预测的森林固碳分析和多目标规划管理策略. 科技风. 2023(19): 156-159 .
    31. 汤浩藩,季巍,周卫平,欧阳希,王华,张文晶,许彦红. 主要乔木树种碳储量与碳密度分布特征——以昆明市海口林场为例. 南方林业科学. 2023(03): 6-10+29 .
    32. 王迎辉,孙浩然,解华臻,张岩,卢振生. 小型树苗扦插机的设计. 南方农机. 2023(22): 35-37+57 .
    33. 江晓雨,刘康桢,徐帅. 基于LCA的合肥滨湖国家森林公园的环境评估. 合肥学院学报(综合版). 2023(05): 70-76 .
    34. 李放,孙红召,黄新峰,曹文昱,冯东阳,冯瑞琦. 基于河南省第九次森林资源清查的乔木林碳储量研究. 绿色科技. 2023(17): 151-157 .
    35. 陈晨,时军霞,刘光武. 河南省乔木林碳储量和碳密度研究. 安徽农业科学. 2023(22): 108-111 .
    36. 韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
    37. 朱昳橙. 海寨林场主要乔木树种碳储量和碳密度特征研究. 宁夏农林科技. 2023(12): 24-28 .
    38. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析. 资源与产业. 2022(01): 15-25 .
    39. 徐明锋,苏永新,龚益广,王锋,张少杰,何春梅. 粤西桉阔林乔木层碳密度及其影响因子研究. 林业与环境科学. 2022(01): 1-8 .
    40. 张全斌,周琼芳. “双碳”目标下中国能源CO_2减排路径研究. 中国国土资源经济. 2022(04): 22-30 .
    41. 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学. 2022(02): 32-41 .
    42. 尹海龙,张乃暄,许中旗. 冀北坝上及坝下地区华北落叶松林土壤碳储量的比较. 林业与生态科学. 2022(02): 164-168 .
    43. 刘华超,任春颖,王宗明,张柏. 大兴安岭生态功能区生态系统服务功能动态及权衡协同关系研究. 生态与农村环境学报. 2022(05): 587-598 .
    44. 胡忠宇,苏建兰. 森林植被碳储量研究综述与展望. 农业与技术. 2022(12): 58-62 .
    45. 肖水寒,张驭骁,张佳栋,周甲佳. 基于碳存储量预测的森林经营计划决策模型. 科学技术创新. 2022(23): 165-168 .
    46. Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
    47. 曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
    48. 周静,吕晓琪. 北京大兴区森林植被碳储量计算及价值分析. 绿色科技. 2022(16): 49-52 .
    49. 薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
    50. 雷海清,孙高球,郑得利. 温州市森林生态系统碳储量研究. 南京林业大学学报(自然科学版). 2022(05): 20-26 .
    51. 肖君. 福建省天然乔木林碳储量动态变化及增汇策略. 南京林业大学学报(自然科学版). 2022(05): 27-32 .
    52. 范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 . 本站查看
    53. 张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 . 本站查看
    54. 陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
    55. 荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
    56. 王飞平,张加龙. 基于碳卫星的森林碳储量估测研究综述. 世界林业研究. 2022(06): 30-35 .
    57. 侯瑞萍,陈健,夏朝宗,宋佳庚,黄翔,郑芊卉,安天宇,郝月兰. 2020年京津冀地区林地和其他生物质碳汇量研究. 林业资源管理. 2022(05): 42-52 .
    58. 郭学媛,朱建华,刘华妍,田惠玲,李春蕾,刘常富,肖文发. 林业活动对区域森林生物量碳源汇格局的影响——以南平市为例. 生态学报. 2022(23): 9548-9559 .
    59. 侯瑞萍,夏朝宗,陈健,郑芊卉,李海奎,黄金金,黄翔,邓继峰,韩旭,安天宇,郝月兰,苟丽晖. 长江经济带林地和其他生物质碳储量及碳汇量研究. 生态学报. 2022(23): 9483-9498 .
    60. 韩光荣,赵琦,邵长城. 优化施肥对樟子松幼苗生长和抗逆生理的影响. 林业调查规划. 2022(06): 49-54 .
    61. 刘丽,彭琛. 宁强县森林资源变化分析. 绿色科技. 2021(19): 97-99 .
    62. 张峰,彭祚登. 北京市森林碳储量和碳汇经济价值研究. 林业资源管理. 2021(06): 52-58 .

    Other cited types(41)

Catalog

    Article views (2466) PDF downloads (44) Cited by(103)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return