• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ye Zi-qi, Deng Ru-jun, Wang Yu-chen, Wang Jian-ming, Li Jing-wen, Zhang Fan-bing, Chen Jie. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426
Citation: Ye Zi-qi, Deng Ru-jun, Wang Yu-chen, Wang Jian-ming, Li Jing-wen, Zhang Fan-bing, Chen Jie. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426

Branching patterns of clonal root of Populus euphratica and its associations with soil factors

More Information
  • Received Date: November 25, 2017
  • Revised Date: January 04, 2018
  • Published Date: January 31, 2018
  • ObjectiveThe clonal growth of Populus euphratica plays an important role to the recruitment and persistence of the population in arid-climate region, and the change in branching pattern of clonal roots is a key process for P. euphratica to achieve the clonal growth in heterogeneous environment. This paper attempts to clarify the branching pattern of clonal root system of P. euphratica in heterogeneous riparian habitat, to estimate the correlations between branching traits of clonal roots including internal length (IL), branching intensity (BI), vertical-and horizontal-branching angle (VBA and HBA), and soil factors, and then to find the key factors driving changes of the branching pattern.
    MethodWe investigated 16 clonal root branches over 10 m by manual digging and collected below-ground environmental factors correspondingly in a natural floodplain of Ejin Oasis, Inner Mongolia of northern China. Correlation and ordination of the branching traits of clonal root were analyzed using correlation analysis (CA) and principal component analysis (PCA). Redundancy analysis (RDA) and variation partitioning (VP) were applied to explore the relationship between root branching traits and soil factors.
    Result(1) The results of CA and PCA showed that there was a high correlation between the four branching traits (P < 0.05), and the first axis, reflecting 66.88% variation of the branching traits, can represent the changes from guerrilla-branching type (with sparser and longer branches, smaller branching angle in vertical and horizontal) to occupation-branching type (with denser and shorter branches, steeper branching angle in vertical and wider branching angle in horizontal). The former more occur on the edge of the river, and the later more on the edge of the forest. (2) The results of RDA revealed that VBA was mainly affected by soil compactness positively (R2=0.64, P < 0.05), and IL was mainly affected by it negatively (R2=0.87, P < 0.05). Soil total carbon and total nitrogen had a major positive influence on BI and HBA, but soil sandy content had a negative effects on them. The depth of branching points of clonal root was positively controlled by capillary water depth (R2=0.62, P < 0.05). (3) VP results showed that the three set of soil variables including soil nutrient-related, water-related and physical factors explained a total of 68.3% of the variance of P. euphratica branching traits. The independent effects of soil physical factors (soil texture, compactness) were the highest (R2=0.12, P < 0.05). Nutrient- and water-related factors had relative smaller independent effects (R2=0.07, P < 0.05; R2=0.03, respectively), but they had a greatest together influences with soil physical factors to variance of the branching traits (R2=0.23, P < 0.05).
    Conclusion(1) Guerrilla-branching type and occupation-branching type are two main branching pattern of clonal roots for P. euphratica to vegetative propagate in heterogeneous floodplain of arid region. (2) Soil physical factor is the most important factor to drive changes in branching pattern of the clonal roots. P. euphratica tends to develop an occupation-branching clonal roots in soil patches with less sandy and smaller compactness to establish its ramets. (3) The vertical branching angle of clonal roots of P. euphratica expresses a significant ecological plasticity, it may be an important adaptive trait of clonal roots for woody plant that should be paid attention in the future researches of clonal plant.
  • [1]
    Grime J P. The role of plasticity in exploiting environmental heterogeneity[C]//Caldwell M M, Pearcy R W. Exploitation of environmental heterogeneity by plants. San Diego: Academic Press, 1994: 1-19. https://www.sciencedirect.com/science/article/pii/B9780121550707500068
    [2]
    董鸣.克隆植物生态学[M].北京:科学出版社, 2011.

    Dong M. Clonal plant ecology[M]. Beijing: Science Press, 2011.
    [3]
    董鸣.资源异质性环境中的植物克隆生长:觅食行为[J].植物学报, 1996, 38(10): 828-835. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199610011.htm

    Dong M. Clonal growth in plants in relation to resource heterogeneity: foraging behavior[J]. Acta Botanica Sinica, 1996, 38(10): 828-835. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199610011.htm
    [4]
    Wang T, Li X, Liu C H, et al. The compromising foraging of a clonal submerged plant in variable environments of substrate type and light condition: a simulation study[J]. Journal of Plant Ecology, 2016, 10: 538-545. http://cn.bing.com/academic/profile?id=df2f47c66739eb59b561d49d04d1f7eb&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    彭一可, 罗芳丽, 李红丽, 等.根状茎型植物扁秆荆三棱对土壤养分异质性尺度和对比度的生长响应[J].植物生态学报, 2013, 37(4):335-343. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201304006

    Peng Y K, Luo F L, Li H L, et al. Growth responses of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast of soil nutrient heterogeneity[J]. Chinese Journal of Plant Ecology, 2013, 37(4): 335-343. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201304006
    [6]
    施建敏, 叶学华, 陈伏生, 等.竹类植物对异质生境的适应:表型可塑性[J].生态学报, 2014, 34(20): 5687-5695. http://d.old.wanfangdata.com.cn/Periodical/stxb201420001

    Shi J M, Ye X H, Chen F S, et al. Adaptation of bamboo to heterogeneous habitat: phenotypic plasticity[J]. Acta Ecologica Sinica, 2014, 34(20): 5687-5695. http://d.old.wanfangdata.com.cn/Periodical/stxb201420001
    [7]
    Hutchings M J, Kroon H D. Foraging in plants: the role of morphological plasticity in resource acquisition[J]. Advances in Ecological Research, 1994, 25: 159-238. doi: 10.1016/S0065-2504(08)60215-9
    [8]
    Schenk H J. Clonal splitting in desert shrubs[J]. Plant Ecology, 1999, 141(1-2): 41-52. doi: 10.1023-A-1009895603783/
    [9]
    汤俊兵, 肖燕, 安树青.根茎克隆植物生态学研究进展[J].生态学报, 2010, 30(11): 3028-3036. http://d.old.wanfangdata.com.cn/Periodical/stxb201011027

    Tang J B, Xiao Y, An S Q. Advance of studies on rhizomatous clonal plants ecology[J]. Acta Ecologica Sinica, 2010, 30(11): 3028-3036. http://d.old.wanfangdata.com.cn/Periodical/stxb201011027
    [10]
    王艳红, 王珂, 邢福.匍匐茎草本植物形态可塑性、整合作用与觅食行为研究进展[J].生态学杂志, 2005, 24(1): 70-74. http://d.old.wanfangdata.com.cn/Periodical/stxzz200501014

    Wang Y H, Wang K, Xing F. Advances of studies on the morphological plasticity, integration and foraging behavior of stoloniferous herbaceous plants[J]. Chinese Journal of Ecology, 2005, 24(1): 70-74. http://d.old.wanfangdata.com.cn/Periodical/stxzz200501014
    [11]
    王世绩.全球胡杨林的现状及保护和恢复对策[J].世界林业研究, 1996(6): 37-44. doi: 10.1002-mus.22050/

    Wang S J. The status, conservation and recovery of global resources of Populus euphradica[J]. World Forestry Research, 1996(6): 37-44 doi: 10.1002-mus.22050/
    [12]
    Cao D C, Li J W, Huang Z, et al. Reproductive characteristics of a Populus euphratica population and prospects for its restoration in China[J/OL]. Plos One, 2012, 7(7): e39121[2017-04-22]. https://doi.org/10.1371/journal.pone.0039121.
    [13]
    李志军, 焦培培, 周正立, 等.胡杨横走侧根及不定芽发生的形态解剖学研究[J].北京林业大学学报, 2011, 35(5):42-48. http://j.bjfu.edu.cn/article/id/9647

    Li Z J, Jiao P P, Zhou Z L, et al. Anatomic characteristics of transverse lateral roots and adventitious buds of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 35(5):42-48. http://j.bjfu.edu.cn/article/id/9647
    [14]
    Wiehle M, Eusemann P, Thevs N, et al. Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae)[J]. Trees, 2009, 23(5): 991-1001. doi: 10.1007/s00468-009-0341-0
    [15]
    黄晶晶, 井家林, 曹德昌, 等.不同林龄胡杨克隆繁殖根系分布特征及其构型[J].生态学报, 2013, 33(14):4331-4342. http://d.old.wanfangdata.com.cn/Periodical/stxb201314013

    Huang J J, Jing J L, Cao D C, et al. Clonal root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14): 4331-4342. http://d.old.wanfangdata.com.cn/Periodical/stxb201314013
    [16]
    郑亚琼, 张肖, 梁继业, 等.濒危物种胡杨和灰叶胡杨的克隆生长特征[J].生态学报, 2016, 36(5):1331-1341. http://d.old.wanfangdata.com.cn/Periodical/stxb201605017

    Zheng Y Q, Zhang X, Liang J Y, et al. Clonal growth characteristics of the endangered species Populus euphratica Oliv. and Populus pruinosa Schrenk[J]. Acta Ecologica Sinica, 2016, 36(5):1331-1341. http://d.old.wanfangdata.com.cn/Periodical/stxb201605017
    [17]
    李志军, 焦培培, 周正立, 等.灰叶胡杨根蘖繁殖的形态解剖学特征[J].植物学报, 2012, 47(2):133-140. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201202005

    Li Z J, Jiao P P, Zhou Z L, et al. Morphological and anatomical features of root sucker propagation of Populus pruinosa[J]. Chinese Bulletin of Botany, 2012, 47(2): 133-140. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201202005
    [18]
    曹德昌, 李景文, 陈维强, 等.额济纳绿洲不同林隙胡杨根蘖的发生特征[J].生态学报, 2009, 29(4): 1954-1961. doi: 10.3321/j.issn:1000-0933.2009.04.040

    Cao D C, Li J W, Chen W Q, et al. Development and growth of root suckers of Populus euphratica in different forest gaps in Ejina Oasis[J]. Acta Ecologica Sinica, 2009, 29(4): 1954-1961. doi: 10.3321/j.issn:1000-0933.2009.04.040
    [19]
    Eusemann P, Petzold A, Thevs N, et al. Growth patterns and genetic structure of Populus euphratica Oliv. (Salicaceae) forests in NW China :implications for conservation and management[J]. Forest Ecology & Management, 2013, 297(3): 27-36. https://www.sciencedirect.com/science/article/pii/S0378112713001035
    [20]
    Vonlanthen B, Zhang X, Bruelheide H. Clonal structure and genetic diversity of three desert Phreatophytes[J]. American Journal of Botany, 2010, 97(2): 234. doi: 10.3732/ajb.0800329
    [21]
    Zheng Y, Jiao P, Zhao Z, et al. Clonal growth of Populus pruinosa Schrenk and its role in the regeneration of riparian forests[J]. Ecological Engineering, 2016, 94: 380-392. doi: 10.1016/j.ecoleng.2016.05.080
    [22]
    彭刚, 赵成义, 李君, 等.新疆塔里木河胡杨根蘖苗水分来源初探[J].干旱区研究, 2014, 31(6): 1093-1099. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201406017

    Peng G, Zhao C Y, Li J, et al. Water source of root suckers of Populus euphratica in the Tarim River Basin, Xinjiang[J]. Arid Zone Research, 2014, 31(6): 1093-1099. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201406017
    [23]
    Petzold A, Pfeiffer T, Jansen F, et al. Sex ratios and clonal growth in dioecious Populus euphratica Oliv. Xinjiang Prov, Western China[J]. Trees, 2013, 27(3): 729-744. doi: 10.1007/s00468-012-0828-y
    [24]
    王永斌, 努尔巴依·阿布都沙力克, Thevs N.胡杨(Populus euphratica Oliv.)根繁殖特征[J].生态学杂志, 2007, 26(12): 1937-1941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz200712005

    Wang Y B, Nuerbayi·Abudushalike, Thevs N. Root propagation characteristics of Populus euphratica Oliv.[J]. Chinese Journal of Ecology, 2007, 26(12): 1937-1941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz200712005
    [25]
    Thevs N, Zerbe S, Schnittler M, et al. Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China[J]. Forestry, 2008, 81(1): 45-57. doi: 10.1093/forestry/cpm043
    [26]
    刘晚苟, 山仑, 邓西平.植物对土壤紧实度的反应[J].植物生理学报, 2001, 37(3): 254-260. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200103029

    Liu W G, Shan L, Deng X P. Responses of plant to soil compaction[J]. Plant Physiology Communications, 2001, 37(3): 254-260. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200103029
    [27]
    Jeník J. Clonal growth in woody plants: a review[J]. Folia Geobotanica, 1994, 29(2): 291-306. doi: 10.1007/BF02803802
    [28]
    张明如, 翟明普, 王学勇, 等.火炬树克隆植株生长和生物量特征的研究[J].林业科学, 2004, 40(3): 39-45. doi: 10.3321/j.issn:1001-7488.2004.03.006

    Zhang M R, Zhai M P, Wang X Y, et al. A study on the characteristics of the growth and the biomass of clonal ramets in Rhus typhina[J]. Scientia Silvae Sinicae, 2004, 40(3): 39-45. doi: 10.3321/j.issn:1001-7488.2004.03.006
    [29]
    Cannon W A. The root habits of desert plants[M]. Washington: Carnegie Institution of Washington, 1911.
    [30]
    Gibbens R P, Lenz J M. Root systems of some Chihuahuan Desert plants[J]. Journal of Arid Environments, 2001, 49(2): 221-263. doi: 10.1006/jare.2000.0784
    [31]
    Kroons H D, Hutchings M J. Morphological plasticity in clonal plants: the foraging concept reconsidered[J]. Journal of Ecology, 1995, 83(1): 143-152. doi: 10.2307/2261158
    [32]
    廖明隽, 王其兵, 宋明华, 等.内蒙古锡林河流域不同生境中羊草的克隆构型和分株种群特征[J].植物生态学报, 2002, 26(1): 33-38. doi: 10.3321/j.issn:1005-264X.2002.01.006

    Liao M J, Wang Q B, Song M H, et al. Clonal architecture and ramet population characteristics of Leymus chinensis from different habitats in the Xilin River Watershed[J]. Acta Phytoecologica Sinica, 2002, 26(1): 33-38. doi: 10.3321/j.issn:1005-264X.2002.01.006
    [33]
    罗学刚, 董鸣.匍匐茎草本蛇莓克隆构型对土壤养分的可塑性反应[J].生态学报, 2001, 21(12): 1957-1963. doi: 10.3321/j.issn:1000-0933.2001.12.001

    Luo X G, Dong M. Plasticity of clonal architecture in response to soil nutrients in the stoloniferous herb, Duchesnea indica Focke[J]. Acta Ecologica Sinica, 2001, 21(12): 1957-1963. doi: 10.3321/j.issn:1000-0933.2001.12.001
    [34]
    Vennetier M, Zanetti C, Meriaux P, et al. Tree root architecture: new insights from a comprehensive study on dikes[J]. Plant & Soil, 2015, 387(1-2): 81-101. http://cn.bing.com/academic/profile?id=c3d43337f184e3e852edb82f795ff077&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]Zhou Yunhong, Li Jianliang, Wang Lidong, Zou Jinlong, Liu Yanqing, Lu Jingxing, Zhao Wanning, Jia Zhongkui. Effects of thinning on litter decomposition of Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(12): 29-37. DOI: 10.12171/j.1000-1522.20210114
    [2]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [3]Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057
    [4]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [5]Hu Xuefan, Zhang Huiru, Zhou Chaofan, Zhang Xiaohong. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 2019, 41(5): 137-147. DOI: 10.13332/j.1000-1522.20190037
    [6]ZHANG Tian, ZHU Yu-jie, DONG Xi-bin. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 1-12. DOI: 10.13332/j.1000-1522.20170187
    [7]SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
    [8]ZHANG Yi, WANG Chun-mei, XU Ke, HAN Jin-feng, YANG Xin-tong, LIN Jia-li. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 54-63. DOI: 10.13332/j.1000-1522.20160048
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Guo-lei, LIU Yong, XU Yang, GUO Bei, ZHANG Ke-dong, ZHAO Shuang-rong. Effects of thinning intensity on the development of undergrowth in Pinus tabulaeformis plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 70-75.
  • Cited by

    Periodical cited type(10)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 倪靖峰,吕世琪,王占印,周超凡,刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性. 陆地生态系统与保护学报. 2024(01): 1-10 .
    3. 徐罗,亢新刚,陈月明,刘旭. 依据单因子评价体系的天然云冷杉针阔混交林立地质量评价. 东北林业大学学报. 2024(12): 25-31 .
    4. 周甲敏,刘兆刚,董灵波. 基于蓄积潜在生产力的小兴安岭阔叶混交林立地质量评价. 北京林业大学学报. 2024(12): 21-29 . 本站查看
    5. 龚宇浩,孙益群,董晨,胡彦蓉,高威芳. 基于广义代数差分法和因子选择的杉木人工林立地质量评价. 浙江农林大学学报. 2023(06): 1282-1291 .
    6. 沈剑波,王应宽,雷相东,雷渊才,汪求来,叶金盛. 基于BP神经网络的广东省针阔混交异龄林立地质量评价. 北京林业大学学报. 2019(05): 38-47 . 本站查看
    7. 秦倩倩,王海燕,李翔,雷相东,解雅麟,郑永林,耿琦. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素. 生态学报. 2019(12): 4519-4529 .
    8. 卢立华,冯益明,农友,李华,农良书,孙冬婧,黄德卫,明安刚. 基于林班尺度的森林立地类型划分与质量评价. 林业资源管理. 2018(02): 48-57 .
    9. 轩俊伟,朱静. 天山云杉立地指数地统计空间分析. 林业资源管理. 2017(03): 46-50 .
    10. 倪伟星. 闽北湿地松人工林立地质量精确评价. 武夷学院学报. 2017(12): 61-67 .

    Other cited types(9)

Catalog

    Article views (2228) PDF downloads (117) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return