Citation: | Li Jinyu, Gao Yuan, Zhang Qin, Liu Xiaomin, Gao Hongbo. Genetic identification and analysis of chloroplast division mutants x17-3 and pd50 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 86-95. DOI: 10.13332/j.1000-1522.20170433 |
[1] |
Cavalier-Smith T. Membrane heredity and early chloroplast evolution[J]. Trends in Plant Science, 2000, 5(4):174-182. doi: 10.1016/S1360-1385(00)01598-3
|
[2] |
Dyall S D, Brown M T, Johnson P J. Ancient invasions: from endosymbionts to organelles[J]. Science, 2004, 304:253-257. doi: 10.1126/science.1094884
|
[3] |
Osteryoung K W, Pyke K A. Division and dynamic morphology of plastids[J]. Annual Review of Plant Biology, 2014, 65:443-472. doi: 10.1146/annurev-arplant-050213-035748
|
[4] |
Chiang Y H, Zubo Y O, Tapken W, et al. Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis[J]. Plant Physiology, 2012, 160(1):332-348. doi: 10.1104/pp.112.198705
|
[5] |
Okazaki K, Kabeya Y, Suzuki K, et al. The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation[J]. The Plant Cell, 2009, 21(6):1769-1780. doi: 10.1105/tpc.109.067785
|
[6] |
Vercruyssen L, Tognetti V B, Gonzalez N, et al. GROWTH REGULATING FACTOR5 stimulates Arabidopsis chloroplast division, photosynthesis, and leaf longevity[J]. Plant Physiology, 2015, 167(3):817-832. doi: 10.1104/pp.114.256180
|
[7] |
Gao Y, Liu H, An C, et al. Arabidopsis FRS4/CPD25 and FHY3/CPD45 work cooperatively to promote the expression of the chloroplast division gene ARC5 and chloroplast division[J]. The Plant Journal, 2013, 75(5):795-807. doi: 10.1111/tpj.2013.75.issue-5
|
[8] |
Haswell E S, Meyerowitz E M. MscS-like proteins control plastid size and shape in Arabidopsis thaliana[J]. Current Biology, 2006, 16(1):1-11. doi: 10.1016/j.cub.2005.11.044
|
[9] |
Veley K M, Marshburn S, Clure C E, et al. Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth[J]. Current Biology, 2012, 22(5):408-413. doi: 10.1016/j.cub.2012.01.027
|
[10] |
Raynaud C, Perennes C, Reuzeau C, et al. Cell and plastid division are coordinated through the prereplication factor AtCDT1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(23):8216-8221. doi: 10.1073/pnas.0502564102
|
[11] |
Wu G Z, Xue H W. Arabidopsis beta-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development[J]. The Plant Cell, 2010, 22(11):3726-3744. doi: 10.1105/tpc.110.075564
|
[12] |
Nobusawa T, Umeda M. Very-long-chain fatty acids have an essential role in plastid division by controlling Z-ring formation in Arabidopsis thaliana[J]. Genes to Cells, 2012, 17(8):709-719. doi: 10.1111/j.1365-2443.2012.01619.x
|
[13] |
Fan J, Zhai Z, Yan C, et al. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids[J]. The Plant Cell, 2015, 27(10):2941-2955. https://www.ncbi.nlm.nih.gov/pubmed/26410300?dopt=Abstract
|
[14] |
Xu C, Fan J, Cornish A J, et al. Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein[J]. The Plant Cell, 2008, 20(8):2190-2204. doi: 10.1105/tpc.108.061176
|
[15] |
Fan J, Xu C. Genetic analysis of Arabidopsis mutants impaired in plastid lipid import reveals a role of membrane lipids in chloroplast division[J]. Plant Signaling & Behavior, 2011, 6(3):458-460. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3142439
|
[16] |
Okazaki K, Miyagishima S Y, Wada H. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis[J]. The Plant Cell, 2015, 27(3):663-674. doi: 10.1105/tpc.115.136234
|
[17] |
李劲宇, 安传敬, 刘小敏, 等.叶绿体分裂分子机制研究进展[J].植物生理学报, 2016, 52(11): 1733-1744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201611021
Li J Y, An C J, Liu X M, et al. Recent progress in the molecular mechanism of chloroplast division[J]. Plant Physiology Journal, 2016, 52(11): 1733-1744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201611021
|
[18] |
Asano T, Yoshioka Y, Kurei S, et al. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis[J]. The Plant Journal, 2004, 38(3):448-459. doi: 10.1111/tpj.2004.38.issue-3
|
[19] |
Simkova K, Kim C, Gacek K, et al. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals the crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling[J]. The Plant Journal, 2012, 69(4):701-712. doi: 10.1111/tpj.2012.69.issue-4
|
[20] |
Hudik E, Yoshioka Y, Domenichini S, et al. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant[J]. Plant Physiology, 2014, 166(1):152-167. doi: 10.1104/pp.114.242628
|
[21] |
Sugita C, Kato Y, Yoshioka Y, et al. CRUMPLED LEAF (CRL) homologs of Physcomitrella patens are involved in the complete separation of dividing plastids[J]. Plant & Cell Physiology, 2012, 53(6):1124-1133. https://www.ncbi.nlm.nih.gov/pubmed/22514088
|
[22] |
Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148(1):350-382. doi: 10.1016-0076-6879(87)48036-1/
|
[23] |
Porra R J, Thompson W A, Kriedemann P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy[J]. Biochimica et Biophysica Acta, 1989, 975(3):384-394. doi: 10.1016/S0005-2728(89)80347-0
|
[24] |
Zhang X, Guo H. mRNA decay in plants: both quantity and quality matter[J]. Current Opinion in Plant Biology, 2017, 35:138-144. doi: 10.1016/j.pbi.2016.12.003
|
[25] |
Luesse D R, Wilson M E, Haswell E S. RNA sequencing analysis of the msl2msl3, crl, and ggps1 mutants indicates that diverse sources of plastid dysfunction do not alter leaf morphology through a common signaling pathway[J/OL]. Frontiers in Plant Science, 2015, 6[2017-10-28]. https://doi.org/10.3389/fpls.2015.01148.
|
[26] |
Reddy A S N, Barta A. Complexity of the alternative splicing landscape in plants[J]. The Plant Cell, 2013, 25(10):3657-3683. doi: 10.1105/tpc.113.117523
|