Advanced search
    Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
    Citation: Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436

    Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana

    More Information
    • Received Date: December 06, 2017
    • Revised Date: January 01, 2018
    • Published Date: February 28, 2018
    • ObjectiveCalvin cycle plays an important role in the photosyntheic process and strongly impacts the growth and development of plants.Previous studies have showed that expression level of sedoheptulose-1, 7-bisphosphatase (SBPase) gene is significantly up-regulated in the fast-growing hybrid poplar with the high photosynthetic rate in fast-growth phase, suggesting that the gene may plays a key role in the photosynthetic carbon fixation.
      MethodIn order to further analyze the function of SBPase in photosynthetic efficiency and plant growth and development in woody plants, PdSBP gene was cloned from fast-growing hybrid Populus NE-19 (Populus nigra×(Populus deltoids×Populus nigra)).The 35S: PdSBP: GFP expression vector was constructed and transformed into Arabidopsis thaliana by Agrobacterium tumefaciens inflorescence infection. We used antibiotic selection, PCR identification and subcellular localization to successfully achieve the overexpressing PdSBPase Arabidopsis.
      ResultUnder normal growth conditions, the leaf area, root length, and plant height of overexpressing plants were all better than those of wild type and mutant. Among them, the leaf area of transgenic plants was 1.79 times of the wild type and the root length was 1.93 times of the wild type. In comparison, the mutant had an obvious dwarfing phenomenon, with yellow and short leaves.Furthermore, chlorophyll content was lower than other genotypes. In addition, the SBPase activity of transgenic lines was 1.4 times of wild type, 1.9 times of the mutant.The RuBP yield and starch content were also higher than those of wild type and the mutant. The yield of RuBP in transgenic plants was 1.37 and 1.76 times of the wild type and the mutant, respectively.The starch content of the transgenic lines reached 50.26μg/g, while that of the mutants was not detected.
      ConclusionThese results indicate that PdSBPase plays a vital role in the formation of RuBP and starch and other polysaccharides synthesis, and can promote plants to accumulate more carbohydrates and then positively regulate the photosynthetic capacity of plants.
    • [1]
      Smith A M, Stitt M. Coordination of carbon supply and plant growth[J]. Plant Cell & Environment, 2007, 30(9): 1126-1149. http://cn.bing.com/academic/profile?id=a3238d057aa8780a7e5ffa96461cb666&encoded=0&v=paper_preview&mkt=zh-cn
      [2]
      Ducat D C. Metabolic engineering: kick-starting TCA cycling[J]. Nature Plants, 2015, 1(5): 15058. doi: 10.1038/nplants.2015.58
      [3]
      Raines C A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies[J]. Plant Physiology, 2011, 155(1): 36-42. doi: 10.1104/pp.110.168559
      [4]
      RAINES C A. The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10. doi: 10.1023-A-1022421515027/
      [5]
      Raines C A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle[J].Plant Cell & Environment, 2006, 29(3): 331-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fefcc085cfd2f0f0c2eb4b3513b859be
      [6]
      Archie R, Portis J.Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective[J].Photosynthesis Research, 2007, 94(1): 121-143. http://cn.bing.com/academic/profile?id=f0197779002611cae29c82994220e5ce&encoded=0&v=paper_preview&mkt=zh-cn
      [7]
      Harrison E P, Olcer H, Llcyd J C, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J].Journal of Experimental Botany, 2001, 52: 1779-1784. doi: 10.1093/jexbot/52.362.1779
      [8]
      Raines C A, Harrison E P, Ölçer H, et al. Investigating the role of the thiol-regulated enzyme sedoheptulose-1, 7-bisphosphatase in the control of photosynthesis[J]. Physiologia Plantarum, 2000, 110(3): 303-308. doi: 10.1034/j.1399-3054.2000.1100303.x
      [9]
      Tamoi M, Nagaoka M, Miyagawa Y, et al. Contribution of fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants[J].Plant & Cell Physiology, 2006, 47(3): 380-390. http://cn.bing.com/academic/profile?id=6eef8d483c2b6b0dcdf4d9955230e0e0&encoded=0&v=paper_preview&mkt=zh-cn
      [10]
      Pettersson G, Ryde-pettersson U. Dependence of the Calvin cycle activity on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates[J]. European Journal of Biochemistry, 1989, 186(3): 683-687. doi: 10.1111/ejb.1989.186.issue-3
      [11]
      Jiang Y H, Wang D Y, Wen J F. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle[J].Bmc Evolutionary Biology, 2012, 12(1): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002286235
      [12]
      Gutle D D, Roret T, Muller S J, et al. Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6779-6784. doi: 10.1073/pnas.1606241113
      [13]
      Rojas-gonzalez J A, Soto-suarez M, Garcia-diaz A, et al. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana[J].Journal of Experimental Botany, 2015, 66(9): 2673-2689. doi: 10.1093/jxb/erv062
      [14]
      Lawson T, Bryant B, Lefebvre S, et al. Decreased SBPase activity alters growth and development in transgenic tobacco plants[J]. Plant Cell & Environment, 2006, 29(1): 48-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0e4d3cd3c926d3f042fd8ff602d446b
      [15]
      Lefebvre S, Lawson T, Zakhleniuk O V, et al. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development[J]. Plant Physiology, 2005, 138(1): 451-460. doi: 10.1104/pp.104.055046
      [16]
      牛正田, 张绮纹, 镇华.国外杨树速生机制与理想株型研究进展[J].世界林业研究, 2006, 19(2): 23-27. doi: 10.3969/j.issn.1001-4241.2006.02.005

      Niu Z T, Zhang Q W, Zhen H.Advances in research on fast-growing mechanism and ideotypes of Populus[J].World Forestry Research, 2006, 19(2):23-27. doi: 10.3969/j.issn.1001-4241.2006.02.005
      [17]
      Hao S, Zhao T, Xia X, et al. Genome-wide comparison of two poplar genotypes with different growth rates[J].Plant Molecular Biology, 2011, 76(6): 575-591. doi: 10.1007/s11103-011-9790-0
      [18]
      Han X, Tang S, An Y, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J].Journal of Experimental Botany, 2013, 64(14): 4589-4601. doi: 10.1093/jxb/ert262
      [19]
      Bechtold N, Jolivet S, VoisinR, et al. The endosperm and the embryo of Arabidopsis thaliana are independently transformed through Infiltration by Agrobacterium tumefaciens[J]. Transgenic Research, 2003, 12(4): 509-517. doi: 10.1023/A:1024272023966
      [20]
      Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148(1): 350-382. doi: 10.1016-0076-6879(87)48036-1/
      [21]
      Raines C A, Paul M J. Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology[J].Journal of Experimental Botany, 2006, 57(9): 1857-1862. doi: 10.1093/jxb/erl011
      [22]
      Von caemmerer S, Evans J R. Enhancing C3 photosynthesis[J].Plant Physiology, 2010, 154(2): 589-592. doi: 10.1104/pp.110.160952
      [23]
      Ruan C J, Shao H B, Silva J A T D. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering[J].Critical Reviews in Biotechnology, 2012, 32(1): 1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.3109/07388551.2010.533119
      [24]
      王丹, 安轶, 韩潇, 等.超表达杨树RPEase基因促进了拟南芥的生长发育[J].北京林业大学学报, 2016, 38(5): 67-76. doi: 10.13332/j.1000-1522.20150507

      Wang D, An Y, Han X, et al. Over-expression of RPEase gene promotes the growth and development of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2016, 38 (5) :67-76. doi: 10.13332/j.1000-1522.20150507
      [25]
      Simkin A J, Lopez-calcagno P E, Davey P A, et al. Simultaneous stimulation of sedoheptulose 1, 7-bisphosphatase, fructose 1, 6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis[J].Plant Biotechnology Journal, 2017, 15(7): 805-816. doi: 10.1111/pbi.12676
      [26]
      RainesA C, Lloyd J C, Dyer T A, et al. New insights New insights into the structure and function of sedoheptulose-1, 7-bisphosphatase: an important but neglected Calvin cycle enzyme[J].Journal of Experimental Botany, 1999, 50: 1-8. http://cn.bing.com/academic/profile?id=52c3868ba10cce0e646582b08d6420d3&encoded=0&v=paper_preview&mkt=zh-cn
      [27]
      袁传忠, 韩雪娟, 李轶群, 等.桑树景天庚酮糖-1, 7-二磷酸酶基因的遗传转化及生物学功能分析[J].蚕业科学, 2013(3):413-419. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201303002.htm

      Yuan C Z, Han X J, Li Y Q, et al.Genetic transformation and biological function analysis of the Sedoheptulose-1, 7-bisphosphatase gene from mulberry[J].Science of Sericulture, 2013(3):413-419. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201303002.htm
      [28]
      Cordoba J, Molina-cano J L, Martinez-carrasco R, et al. Functional and transcriptional characterization of a barley mutant with impaired photosynthesis[J].Plant Science, 2016, 244:219-230. http://cn.bing.com/academic/profile?id=12706f2558e84669603f93cfb90176e5&encoded=0&v=paper_preview&mkt=zh-cn
      [29]
      Cho M H, Park H L, Hahn T R. Engineering leaf carbon metabolism to improve plant productivity[J]. Plant Biotechnology Reports, 2014, 9(1): 1-10. http://cn.bing.com/academic/profile?id=27afa5c550e5da6213dc679736628682&encoded=0&v=paper_preview&mkt=zh-cn
      [30]
      Harrison E P, Olcer H, Lloyd J, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J].Journal of Experimental Botany, 2001, 52: 1779. doi: 10.1093/jexbot/52.362.1779
      [31]
      Liu X L, Yu H D, Guan Y, et al. Carbonylation and loss-of-function analyses of SBPase reveal its metabolic interface role in oxidative stress, carbon assimilation, and multiple aspects of growth and development in Arabidopsis[J].Molecular Plant, 2012, 5(5): 1082-1099. doi: 10.1093/mp/sss012
      [32]
      Ding F, Wang M, Zhang S, et al. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants[J/OL].Scientific Reports, 2016(6): 32741[2016-10-30]. http://www.nature.com/scientificreports/.
      [33]
      Fei D, Meiling W, Shuoxin Z. Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants[J]. Scientia Horticulturae, 2017, 214:27-33. doi: 10.1016/j.scienta.2016.11.010
    • Related Articles

      [1]Jin Chuan, Zha Tianshan, Jia Xin, Tian Yun, Zhou Wenjun, Yang Shuangbao, Guo Zifan. Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species[J]. Journal of Beijing Forestry University, 2020, 42(8): 72-80. DOI: 10.12171/j.1000-1522.20190316
      [2]SUN Yan-shuang, XING Bao-yue, YANG Guang, LIU Gui-feng. Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. Journal of Beijing Forestry University, 2017, 39(10): 33-41. DOI: 10.13332/j.1000-1522.20170099
      [3]ZHOU Zhi-qiang, PENG Ying-li, SUN Ming-long, ZHANG Yu-hong, LIU Tong. Effects of nitrogen levels on photosynthetic and fluorescence characteristics in seedlings of endangered plant Phellodendron amurense.[J]. Journal of Beijing Forestry University, 2015, 37(12): 17-23. DOI: 10.13332/j.1000-1522.20150281
      [4]ZHAO Juan, SONG Yuan, MAO Zi-jun. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64-71.
      [5]SHI Zheng, SHI Sheng-qing, ZHANG Zhi-xiang, GAO Rong-fu, XIAO Wen-fa. Effects of drought and excess salt stress on characteristics of chlorophyll fluorescence of leaves in Haloxylon ammodendron.[J]. Journal of Beijing Forestry University, 2012, 34(3): 20-25.
      [6]REN Jian-wu, WANG Xing-zhi, YANG Li-na, GAO Rong-fu. Comprehensive linkage among chlorophyll fluorescence, carbon assimilation and stomatal movement of three dendrobia.[J]. Journal of Beijing Forestry University, 2011, 33(6): 166-172.
      [7]CHEN Xi, CHEN Bin-li, ZHOU Chen, ZHENG Cai-xia. Response of chlorophyll fluorescence of Pinus tabulaeformis Carr. needles in growing seasons to temperature changes.[J]. Journal of Beijing Forestry University, 2011, 33(6): 70-74.
      [8]QIAN Yong-qiang, ZHOU Xiao-xing, HAN Lei, SUN Zhen-yuan, JU Guan-sheng. Rapid light-response curves of PSⅡ chlorophyll fluorescence parameters in the leaves of Salix babylonica, Salix ‘J172’ and Salix leucopithecia to Cd2+ stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 8-14.
      [9]YING Ye-qing, GUO Jing, WEI Jian-fen, ZOU Yi-qiao, HU Dong-chun, FANG Wei.. Photosynthetic and chlorophyll fluorescent responses of Phyllostachys pubescens seedlings to water deficiency stress.[J]. Journal of Beijing Forestry University, 2009, 31(6): 128-133.
      [10]DUAN Ai-guo, BAO Er-jiang, ZHANG Jian-guo, HE Cai-yun, SAI Li-ke, . Dynamic laws of chlorophyll fluorescence parameters in needle leaves of different leaf ages and locations of Pinus armandii[J]. Journal of Beijing Forestry University, 2008, 30(5): 26-32.

    Catalog

      Article views (2457) PDF downloads (69) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return