Citation: | Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436 |
[1] |
Smith A M, Stitt M. Coordination of carbon supply and plant growth[J]. Plant Cell & Environment, 2007, 30(9): 1126-1149. http://cn.bing.com/academic/profile?id=a3238d057aa8780a7e5ffa96461cb666&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
Ducat D C. Metabolic engineering: kick-starting TCA cycling[J]. Nature Plants, 2015, 1(5): 15058. doi: 10.1038/nplants.2015.58
|
[3] |
Raines C A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies[J]. Plant Physiology, 2011, 155(1): 36-42. doi: 10.1104/pp.110.168559
|
[4] |
RAINES C A. The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10. doi: 10.1023-A-1022421515027/
|
[5] |
Raines C A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle[J].Plant Cell & Environment, 2006, 29(3): 331-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fefcc085cfd2f0f0c2eb4b3513b859be
|
[6] |
Archie R, Portis J.Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective[J].Photosynthesis Research, 2007, 94(1): 121-143. http://cn.bing.com/academic/profile?id=f0197779002611cae29c82994220e5ce&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
Harrison E P, Olcer H, Llcyd J C, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J].Journal of Experimental Botany, 2001, 52: 1779-1784. doi: 10.1093/jexbot/52.362.1779
|
[8] |
Raines C A, Harrison E P, Ölçer H, et al. Investigating the role of the thiol-regulated enzyme sedoheptulose-1, 7-bisphosphatase in the control of photosynthesis[J]. Physiologia Plantarum, 2000, 110(3): 303-308. doi: 10.1034/j.1399-3054.2000.1100303.x
|
[9] |
Tamoi M, Nagaoka M, Miyagawa Y, et al. Contribution of fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants[J].Plant & Cell Physiology, 2006, 47(3): 380-390. http://cn.bing.com/academic/profile?id=6eef8d483c2b6b0dcdf4d9955230e0e0&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Pettersson G, Ryde-pettersson U. Dependence of the Calvin cycle activity on kinetic parameters for the interaction of non-equilibrium cycle enzymes with their substrates[J]. European Journal of Biochemistry, 1989, 186(3): 683-687. doi: 10.1111/ejb.1989.186.issue-3
|
[11] |
Jiang Y H, Wang D Y, Wen J F. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle[J].Bmc Evolutionary Biology, 2012, 12(1): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002286235
|
[12] |
Gutle D D, Roret T, Muller S J, et al. Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6779-6784. doi: 10.1073/pnas.1606241113
|
[13] |
Rojas-gonzalez J A, Soto-suarez M, Garcia-diaz A, et al. Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana[J].Journal of Experimental Botany, 2015, 66(9): 2673-2689. doi: 10.1093/jxb/erv062
|
[14] |
Lawson T, Bryant B, Lefebvre S, et al. Decreased SBPase activity alters growth and development in transgenic tobacco plants[J]. Plant Cell & Environment, 2006, 29(1): 48-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0e4d3cd3c926d3f042fd8ff602d446b
|
[15] |
Lefebvre S, Lawson T, Zakhleniuk O V, et al. Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development[J]. Plant Physiology, 2005, 138(1): 451-460. doi: 10.1104/pp.104.055046
|
[16] |
牛正田, 张绮纹, 镇华.国外杨树速生机制与理想株型研究进展[J].世界林业研究, 2006, 19(2): 23-27. doi: 10.3969/j.issn.1001-4241.2006.02.005
Niu Z T, Zhang Q W, Zhen H.Advances in research on fast-growing mechanism and ideotypes of Populus[J].World Forestry Research, 2006, 19(2):23-27. doi: 10.3969/j.issn.1001-4241.2006.02.005
|
[17] |
Hao S, Zhao T, Xia X, et al. Genome-wide comparison of two poplar genotypes with different growth rates[J].Plant Molecular Biology, 2011, 76(6): 575-591. doi: 10.1007/s11103-011-9790-0
|
[18] |
Han X, Tang S, An Y, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis[J].Journal of Experimental Botany, 2013, 64(14): 4589-4601. doi: 10.1093/jxb/ert262
|
[19] |
Bechtold N, Jolivet S, VoisinR, et al. The endosperm and the embryo of Arabidopsis thaliana are independently transformed through Infiltration by Agrobacterium tumefaciens[J]. Transgenic Research, 2003, 12(4): 509-517. doi: 10.1023/A:1024272023966
|
[20] |
Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148(1): 350-382. doi: 10.1016-0076-6879(87)48036-1/
|
[21] |
Raines C A, Paul M J. Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology[J].Journal of Experimental Botany, 2006, 57(9): 1857-1862. doi: 10.1093/jxb/erl011
|
[22] |
Von caemmerer S, Evans J R. Enhancing C3 photosynthesis[J].Plant Physiology, 2010, 154(2): 589-592. doi: 10.1104/pp.110.160952
|
[23] |
Ruan C J, Shao H B, Silva J A T D. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering[J].Critical Reviews in Biotechnology, 2012, 32(1): 1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.3109/07388551.2010.533119
|
[24] |
王丹, 安轶, 韩潇, 等.超表达杨树RPEase基因促进了拟南芥的生长发育[J].北京林业大学学报, 2016, 38(5): 67-76. doi: 10.13332/j.1000-1522.20150507
Wang D, An Y, Han X, et al. Over-expression of RPEase gene promotes the growth and development of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2016, 38 (5) :67-76. doi: 10.13332/j.1000-1522.20150507
|
[25] |
Simkin A J, Lopez-calcagno P E, Davey P A, et al. Simultaneous stimulation of sedoheptulose 1, 7-bisphosphatase, fructose 1, 6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis[J].Plant Biotechnology Journal, 2017, 15(7): 805-816. doi: 10.1111/pbi.12676
|
[26] |
RainesA C, Lloyd J C, Dyer T A, et al. New insights New insights into the structure and function of sedoheptulose-1, 7-bisphosphatase: an important but neglected Calvin cycle enzyme[J].Journal of Experimental Botany, 1999, 50: 1-8. http://cn.bing.com/academic/profile?id=52c3868ba10cce0e646582b08d6420d3&encoded=0&v=paper_preview&mkt=zh-cn
|
[27] |
袁传忠, 韩雪娟, 李轶群, 等.桑树景天庚酮糖-1, 7-二磷酸酶基因的遗传转化及生物学功能分析[J].蚕业科学, 2013(3):413-419. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201303002.htm
Yuan C Z, Han X J, Li Y Q, et al.Genetic transformation and biological function analysis of the Sedoheptulose-1, 7-bisphosphatase gene from mulberry[J].Science of Sericulture, 2013(3):413-419. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201303002.htm
|
[28] |
Cordoba J, Molina-cano J L, Martinez-carrasco R, et al. Functional and transcriptional characterization of a barley mutant with impaired photosynthesis[J].Plant Science, 2016, 244:219-230. http://cn.bing.com/academic/profile?id=12706f2558e84669603f93cfb90176e5&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
Cho M H, Park H L, Hahn T R. Engineering leaf carbon metabolism to improve plant productivity[J]. Plant Biotechnology Reports, 2014, 9(1): 1-10. http://cn.bing.com/academic/profile?id=27afa5c550e5da6213dc679736628682&encoded=0&v=paper_preview&mkt=zh-cn
|
[30] |
Harrison E P, Olcer H, Lloyd J, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J].Journal of Experimental Botany, 2001, 52: 1779. doi: 10.1093/jexbot/52.362.1779
|
[31] |
Liu X L, Yu H D, Guan Y, et al. Carbonylation and loss-of-function analyses of SBPase reveal its metabolic interface role in oxidative stress, carbon assimilation, and multiple aspects of growth and development in Arabidopsis[J].Molecular Plant, 2012, 5(5): 1082-1099. doi: 10.1093/mp/sss012
|
[32] |
Ding F, Wang M, Zhang S, et al. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants[J/OL].Scientific Reports, 2016(6): 32741[2016-10-30]. http://www.nature.com/scientificreports/.
|
[33] |
Fei D, Meiling W, Shuoxin Z. Overexpression of a Calvin cycle enzyme SBPase improves tolerance to chilling-induced oxidative stress in tomato plants[J]. Scientia Horticulturae, 2017, 214:27-33. doi: 10.1016/j.scienta.2016.11.010
|