• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Chuan, Zha Tianshan, Jia Xin, Tian Yun, Zhou Wenjun, Yang Shuangbao, Guo Zifan. Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species[J]. Journal of Beijing Forestry University, 2020, 42(8): 72-80. DOI: 10.12171/j.1000-1522.20190316
Citation: Jin Chuan, Zha Tianshan, Jia Xin, Tian Yun, Zhou Wenjun, Yang Shuangbao, Guo Zifan. Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species[J]. Journal of Beijing Forestry University, 2020, 42(8): 72-80. DOI: 10.12171/j.1000-1522.20190316

Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species

More Information
  • Received Date: August 02, 2019
  • Revised Date: September 17, 2019
  • Available Online: July 29, 2020
  • Published Date: September 06, 2020
  •   Objective  Research on the response process of physiological parameters of desert plants to natural environment fluctuations can better understand and predict the impact of climate change on desert ecosystems.
      Method   We conducted in situ field measurements of chlorophyll fluorescence for three desert shrub species (Artemisia ordosica, Salix psammophila and Hedysarum mongolicum) to explore the responses of photosystem II (PSII) maximum quantum yield (Fv / Fm), photochemical efficiency (ΦPSII) and non-photochemical quenching (NPQ) to environmental factors, in order to understand the PSII photosynthetic physiology and its photoprotection mechanism of desert shrubs in arid environment.
      Result  Under water stress (soil water content < 0.08 m3/m3), Fv / Fm and Φ PSII of three kinds of desert shrubs were reduced and NPQ increased (P < 0.01). The Fv / Fm of S. psammophila was lower than that of A. ordosica and higher than H. mongolicum (P < 0.01). The ΦPSII of H. mongolicum was lower than both A. ordosica and S. psammophila (P < 0.01). The ΦPSII and NPQ for three typical desert shrubs presented a clear daily variation with photosynthetic active radiation (PAR), and also were affected by air temperature (Ta), relative humidity (RH) and vapor pressure difference (VPD). Three shrub species resisted drought stress through heat dissipation mechanism, but had different degrees. The Fv / Fm of A. ordosica can be restored to an appropriate value of about 0.75 through self-regulation of heat dissipation, and its reaction center damage was recoverable. H. mongolicum was greatly affected by drought stress, and its photoprotective response of heat dissipation was sensitive.
      Conclusion  A. ordosica can be considered as the first choice for vegetation restoration in arid areas, S. psammophila is the second and H. mongolicum is not recommended. The activity of PSII reaction center is characterized by changes in chlorophyll fluorescence parameters, which can fully reflect the response strategy of desert shrubs to environmental fluctuations, and can be used as an important means to explore the response of desert plants in arid and semi-arid areas to environmental changes.
  • [1]
    张煜星. 中国荒漠化气候类型的分布[J]. 干旱区研究, 1998, 15(2):46−50.

    Zhang Y X. Distribution of climate type of Chinese desertification[J]. Arid Zone Research, 1998, 15(2): 46−50.
    [2]
    林年丰, 汤洁. 中国干旱半干旱区的环境演变与荒漠化的成因[J]. 地理科学, 2001, 21(1):24−29. doi: 10.3969/j.issn.1000-0690.2001.01.005

    Lin N F, Tang J. Study on the environmental evolution and the causes of desertification in arid and semiarid regions in China[J]. Scientia Geographica Sinica, 2001, 21(1): 24−29. doi: 10.3969/j.issn.1000-0690.2001.01.005
    [3]
    Barros V, Stocker T F. Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change[J]. Journal of Clinical Endocrinology & Metabolism, 2012, 18(6): 586−599.
    [4]
    Huang J, Yu H, Dai A, et al. Drylands face potential threat under 2 degrees C global warming target[J]. Nature Climate Change, 2017, 7(6): 417−422. doi: 10.1038/nclimate3275
    [5]
    Li B, Chen Y, Shi X, et al. Temperature and precipitation changes in different environments in the arid region of northwest China[J]. Theoretical and Applied Climatology, 2013, 112(3−4): 589−596. doi: 10.1007/s00704-012-0753-4
    [6]
    Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 166−171. doi: 10.1038/nclimate2837
    [7]
    Juan W Y, Cai R, Yun T, et al. Photosynthetic gas-exchange and PSⅡ photochemical acclimation to drought in a native and non-native xerophytic species (<italic>Artemisia ordosica</italic> and <italic>Salix psammophila</italic>)[J]. Ecological Indicators, 2018, 94: 130−138. doi: 10.1016/j.ecolind.2018.06.040
    [8]
    种培芳, 李毅, 苏世平. 荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J]. 中国沙漠, 2010, 30(3):539−545.

    Chong P F, Li Y, Su S P. Diurnal change in chlorophyllⅡfluorescence parameters of desert plant <italic>Reaumuria soongorica</italic> and its relationship with environmental factors[J]. Journal of Desert Research, 2010, 30(3): 539−545.
    [9]
    陈凤丽, 靳正忠, 李生宇, 等. 高温对花花柴(<italic>Karelinia caspica</italic>)光系统Ⅱ的影响[J]. 中国沙漠, 2013, 33(5):1371−1376. doi: 10.7522/j.issn.1000-694X.2013.00201

    Chen F L, Jin Z Z, Li S Y, et al. Effects of heat stress on photosystem Ⅱ in <italic>Karelinia caspica</italic>[J]. Journal of Desert Research, 2013, 33(5): 1371−1376. doi: 10.7522/j.issn.1000-694X.2013.00201
    [10]
    Chambers J C, Bradley B A, Brown C S, et al. Resilience to stress and disturbance, and resistance to <italic>Bromus tectorum</italic> L. invasion in cold desert shrublands of western North America[J]. Ecosystems, 2014, 17: 360−375. doi: 10.1007/s10021-013-9725-5
    [11]
    Grant O M, Tronina L, García-Plazaola J L, et al. Resilience of a semi-deciduous shrub, <italic>Cistus salvifolius</italic>, to severe summer drought and heat stress[J]. Functional Plant Biology, 2014, 42(2): 219−228.
    [12]
    吴雅娟, 查天山, 贾昕, 等. 油蒿 (<italic>Artemisia ordosica</italic>) 光化学量子效率和非光化学淬灭的动态及其影响因子[J]. 生态学杂志, 2015, 34(2):319−325.

    Wu Y J, Zha T S, Jia X, et al. Temporal variation and controlling factors of photochemical efficiency and non-photochemical quenching in <italic>Artemisia ordosica</italic>[J]. Chinese Journal of Ecology, 2015, 34(2): 319−325.
    [13]
    张继伟, 赵昕, 陈国雄, 等. 盐胁迫下荒漠植物柠条和油蒿的离子吸收及分配特征[J]. 干旱区资源与环境, 2016, 30(3):68−73.

    Zhang J W, Zhao X, Chen G X, et al. Ion absorption and distribution in <italic>Caragana korshinskii</italic> and <italic>Artemisia ordosica</italic> seedlings under different NaCl stress[J]. Journal of Arid Land Resources and Environment, 2016, 30(3): 68−73.
    [14]
    王飞, 刘世增, 康才周, 等. 干旱胁迫对沙地云杉光合、叶绿素荧光特性的影响[J]. 干旱区资源与环境, 2017, 31(1):142−147.

    Wang F, Liu S Z, Kang C Z, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence characteristics of <italic>Picea mongolica</italic>[J]. Journal of Arid Land Resources and Environment, 2017, 31(1): 142−147.
    [15]
    张明艳, 贾昕, 查天山, 等. 油蒿 (<italic>Artemisia ordosica</italic>) 光系统Ⅱ光化学效率对去除降雨的响应[J]. 中国沙漠, 2017, 37(3):475−482. doi: 10.7522/j.issn.1000-694X.2016.00021

    Zhang M Y, Jia X, Zha T S, et al. PSⅡ photochemical efficiency of <italic>Artemisia ordosica</italic> in response to rainfall exclusion[J]. Journal of Desert Research, 2017, 37(3): 475−482. doi: 10.7522/j.issn.1000-694X.2016.00021
    [16]
    张景波, 张金鑫, 卢琦, 等. 乌兰布和沙漠油蒿叶片PSⅡ叶绿素荧光动力学参数及其光响应曲线动态[J]. 草业科学, 2019, 36(3):713−719.

    Zhang J B, Zhang J X, Lu Q, et al. Dynamic changes of leaf parameters of PSⅡ fluorescence kinetics and fast photosynthetic response curves in <italic>Artemisia ordosica</italic>[J]. Pratacultural Science, 2019, 36(3): 713−719.
    [17]
    朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 2019, 49(9):1321−1334. doi: 10.1360/N072018-00316

    Piao S L, Zhang X P, Chen A P, et al. The impacts of climate extremes on the terrestrial carbon cycle: a review[J]. Scientia Sinica Terrae, 2019, 49(9): 1321−1334. doi: 10.1360/N072018-00316
    [18]
    任才, 贾昕, 吴雅娟, 等. 油蒿光系统Ⅱ光化学参数在生长季早期对降雪事件的响应[J]. 北京林业大学学报, 2019, 41(12):119−127. doi: 10.12171/j.1000-1522.20190058

    Ren C, Jia X, Wu Y J, et al. Responses of PSⅡ photochemical parameter to a snowfall event in early growing season in <italic>Artemisia ordosica</italic>[J]. Journal of Beijing Forestry University, 2019, 41(12): 119−127. doi: 10.12171/j.1000-1522.20190058
    [19]
    杨洪晓, 张金屯, 吴波, 等. 油蒿对半干旱区沙地生境的适应及其生态作用[J]. 北京师范大学学报(自然科学版), 2004, 40(5):681−690.

    Yang H X, Zhang J T, Wu B, et al. Adaptation of <italic>Artemisia ordosica</italic> to temperature arid sandy land and its roles in habitat shift[J]. Journal of Beijing Normal University (Natural Science), 2004, 40(5): 681−690.
    [20]
    曹生奎, 冯起, 司建华, 等. 植物水分利用效率研究方法综述[J]. 中国沙漠, 2009, 29(5):853−858.

    Cao S K, Feng Q, Si J H, et al. Summary on research methods of water use efficiency in plant[J]. Journal of Desert Research, 2009, 29(5): 853−858.
    [21]
    王燕凌, 刘君, 李文兵, 等. 塔里木河下游刚毛柽柳光合作用、蒸腾作用及水分利用效率特性研究[J]. 新疆农业科学, 2015, 52(2):292−299.

    Wang Y L, Liu J, Li W B, et al. Study on characteristics in photosynthesis, transpiration and water use efficiency of <italic>Tamarix hispida</italic> Willd. in the lower reaches of the Tarim River[J]. Xinjiang Agricultural Sciences, 2015, 52(2): 292−299.
    [22]
    Massacci A, Nabiev S M, Pietrosanti L, et al. Response of the photosynthetic apparatus of cotton (<italic>Gossypium hirsutum</italic>) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging[J]. Plant Physiology and Biochemistry, 2008, 46(2): 189−195. doi: 10.1016/j.plaphy.2007.10.006
    [23]
    张亚娟, 谢忠奎, 赵学勇, 等. 水分胁迫对东方百合光合特性、叶绿素荧光参数及干物质积累的影响[J]. 中国沙漠, 2011, 31(4):884−888.

    Zhang Y J, Xie Z K, Zhao X Y, et al. Effects of water stress on photosynthetic characteristics, chlorophyll fluorescence, and dry matter of <italic>Oriental lilies</italic>[J]. Journal of Desert Research, 2011, 31(4): 884−888.
    [24]
    Xu W Z, Deng X P, Xu B C. Photosynthetic activity and efficiency of <italic>Bothriochloa ischaemum</italic> and <italic>Lespedeza davurica</italic> in mixtures across growth periods under water stress[J]. Acta Physiologiae Plantarum, 2014, 36(4): 1033−1044. doi: 10.1007/s11738-013-1481-9
    [25]
    贾虎森, 韩亚琴. 高等植物光合作用的光抑制研究进展[J]. 植物学通报, 2000, 17(3):218−224.

    Jia H S, Han Y Q. Advances in studies on photoinhibition in photosynthesis of higher plants[J]. Chinese Bulletin of Botany, 2000, 17(3): 218−224.
    [26]
    石莎, 冯金朝, 邹学勇. 腾格里沙漠南缘2种沙地灌木植物的光合特征[J]. 云南大学学报(自然科学版), 2007, 29(5):519−524. doi: 10.3321/j.issn:0258-7971.2007.05.019

    Shi S, Feng J Z, Zou X Y. Photosynthetic characteristics of two desert shrubs in south of Tengger Desert[J]. Journal of Yunnan University (Natural Sciences Edition), 2007, 29(5): 519−524. doi: 10.3321/j.issn:0258-7971.2007.05.019
    [27]
    韩刚, 赵忠. 不同土壤水分下4种沙生灌木的光合光响应特性[J]. 生态学报, 2010, 30(15):4019−4026.

    Han G, Zhao Z. Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures[J]. Acta Ecologica Sinica, 2010, 30(15): 4019−4026.
    [28]
    Doupis G, Bertaki M, Psarras G, et al. Water relations, physiological behavior and antioxidant defence mechanism of olive plants subjected to different irrigation regimes[J]. Scientia Horticulturae, 2013, 153(3): 150−156.
    [29]
    何炎红, 白玉娥, 王海燕, 等. 光胁迫对沙冬青叶绿素荧光特征和光呼吸的影响[J]. 西北农业学报, 2015, 24(10):124−130. doi: 10.7606/j.issn.1004-1389.2015.10.018

    He Y H, Bai Y E, Wang H Y, et al. Effect of light stress on chlorophyll fluorescence and photorespiration of <italic>Ammopiptanthus mongolicus</italic>[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(10): 124−130. doi: 10.7606/j.issn.1004-1389.2015.10.018
    [30]
    姜闯道, 高辉远, 邹琦, 等. 叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制[J]. 生态学报, 2005, 25(2):319−325. doi: 10.3321/j.issn:1000-0933.2005.02.021

    Jiang C D, Gao H Y, Zou Q, et al. The co-operation of leaf orientation, photorespiration and thermal dissipation alleviate photoinhibition in young leaves of soybean plants[J]. Acta Ecologica Sinica, 2005, 25(2): 319−325. doi: 10.3321/j.issn:1000-0933.2005.02.021
    [31]
    Öquist G, Chow W S, Anderson J M. Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem Ⅱ[J]. Planta, 1992, 186(3): 450−460.
    [32]
    Ruban A V, Murchie E H. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2012, 1817(7): 977−982. doi: 10.1016/j.bbabio.2012.03.026
    [33]
    Ruban A V. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage[J]. Plant Physiology, 2016, 170(4): 1903−1916. doi: 10.1104/pp.15.01935
    [34]
    阮成江, 李代琼. 黄土丘陵区沙棘气孔导度及其影响因子[J]. 西北植物学报, 2001, 21(6):30−36.

    Ruan C J, Li D Q. Stomatal conductance and influence factors of seabuckthorn in loess hilly region[J]. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(6): 30−36.
    [35]
    Campos H, Trejo C, Peña-Valdivia C B, et al. Stomatal and non-stomatal limitations of bell pepper (<italic>Capsicum annuum</italic> L <italic></italic>.) plants under water stress and re-watering: delayed restoration of photosynthesis during recovery[J]. Environmental & Experimental Botany, 2014, 98(1): 56−64.
    [36]
    许大全. 光系统Ⅱ反应中心的可逆失活及其生理意义[J]. 植物生理学通讯, 1999, 35(4):273−276.

    Xu D Q. Reversible inactivation of photosystem Ⅱ reaction centers and its physiological ignificance[J]. Plant Physiology Communications, 1999, 35(4): 273−276.
    [37]
    Porcar-Castell A, Pfündel E, Korhonen J F J, et al. A new monitoring PAM fluorometer (MONI-PAM) to study the short-and long-term acclimation of photosystem Ⅱ in field conditions[J]. Photosynthesis Research, 2008, 96(2): 173−179. doi: 10.1007/s11120-008-9292-3
    [38]
    Kalaji H M, Jajoo A, Oukarroum A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38: 102−112. doi: 10.1007/s11738-016-2113-y
    [39]
    靳虎甲, 王继和, 李毅, 等. 油蒿生态学研究综述[J]. 西北林学院学报, 2009, 24(4):62−66.

    Jin H J, Wang J H, Li Y, et al. Summary of <italic>Artemisia ordosica</italic> ecology studies[J]. Journal of Northwest Forestry University, 2009, 24(4): 62−66.
    [40]
    马全林, 郑庆中, 贾举杰, 等. 乌兰布和沙漠沙蒿与油蒿群落的物种组成与数量特征[J]. 生态学报, 2012, 3(11):3423−3431.

    Ma Q L, Zheng Q Z, Jia J J, et al. Quantitative characteristics and species composition of <italic>Artemisia sphaerocephala</italic> and <italic>A. ordosica</italic> communities in the Ulanbuh Desert[J]. Acta Ecologica Sinica, 2012, 3(11): 3423−3431.
    [41]
    Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO<sub>2</sub> exchange over a semiarid shrubland in northwest China[J]. Biogeosciences Discussions, 2014, 11(3): 4679−4693.
    [42]
    Schansker G, Van Rensen J J S. Performance of active photosystem Ⅱ centers in photoinhibited pea leaves[J]. Photosynthesis Research, 1999, 62(2): 175−184.
    [43]
    刘晓晴, 常宗强, 马亚丽, 等. 胡杨(<italic>Populus euphratica</italic>)异形叶叶绿素荧光动力学[J]. 中国沙漠, 2014, 34(3):704−711. doi: 10.7522/j.issn.1000-694X.2014.00007

    Liu X Q, Chang Z Q, Ma Y L, et al. Characteristics of the fast chlorophyll fluorescence induction kinetics of heteromorphic leaves in <italic>Populus euphratica</italic>[J]. Journal of Desert Research, 2014, 34(3): 704−711. doi: 10.7522/j.issn.1000-694X.2014.00007
    [44]
    师生波, 张怀刚, 师瑞, 等. 青藏高原春小麦叶片光合作用的光抑制及PSⅡ反应中心光化学效率的恢复分析[J]. 植物生态学报, 2014, 38(4):375−386. doi: 10.3724/SP.J.1258.2014.00034

    Shi S B, Zhang H G, Shi R, et al. Assessment of photosynthetic photo-inhibition and recovery of PSⅡ photochemical efficiency in leaves of wheat varieties in Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2014, 38(4): 375−386. doi: 10.3724/SP.J.1258.2014.00034
    [45]
    郝建卿, 吕娜, 杨扬, 等. 内蒙乌海胡杨异形叶水分及叶绿素荧光参数的比较[J]. 北京林业大学学报, 2010, 32(5):41−44.

    Hao J Q, Lü N, Yang Y, et al. Comparative study of chlorophyll fluorescence parameters and water physiological characters of heteromorphic leaves for <italic>Populus euphratica</italic>[J]. Journal of Beijing Forestry University, 2010, 32(5): 41−44.
    [46]
    韩婧, 吴益, 赵琳,等. 光周期对促成栽培芍药生长开花和叶绿素荧光动力学影响[J]. 北京林业大学学报, 2015, 37(9):62−69.

    Han J, Wu Y, Zhao L, et al. Effects of photoperiod on the growth, flowering and chlorophyll fluorescence kinetics of forced <italic>Paeonia lactiflora</italic>[J]. Journal of Beijing Forestry University, 2015, 37(9): 62−69.
  • Related Articles

    [1]Dai Jinxia, Yao Jiani, Liu Shuang, Su Jianyu, Zhang Junjie. Abundance of nifH gene and nitrogen-fixing microbial community composition characteristics in desert scrubland soil[J]. Journal of Beijing Forestry University, 2024, 46(11): 43-52. DOI: 10.12171/j.1000-1522.20240202
    [2]Feng Xinyan, Jia Xin, Huang Jinze, Gao Shengjie, Yuan Min, Liu Tiantian, Jin Chuan. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62-72. DOI: 10.12171/j.1000-1522.20220510
    [3]Yan Hong, Sun Yingjie, Liu Binhui. Effects of competition on drought adaptability and growth decline of Pinus koraiensis trees[J]. Journal of Beijing Forestry University, 2022, 44(6): 1-9. DOI: 10.12171/j.1000-1522.20210198
    [4]Wei Wei, Wang Baitian, Zhang Kebin. Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI[J]. Journal of Beijing Forestry University, 2020, 42(4): 113-121. DOI: 10.12171/j.1000-1522.20190055
    [5]Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217
    [6]Zhang Yong, Hu Xiaoqing, Li Dou, Liu Xuemei. Cloning the promoter of BpSPL8 from Betula platyphylla and overexpression of BpSPL8 gene affecting drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2019, 41(8): 67-75. DOI: 10.13332/j.1000-1522.20190137
    [7]GUO Xiao-nan, ZHA Tian-shan, JIA Xin, YANG Qiang, MU Jia-wei, LIU Peng, .. Estimation of dewfall amount in a typical desert shrub ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(10): 80-87. DOI: 10.13332/j.1000-1522.20160017
    [8]HAN Chao, DONG Hui, CHANG Zhi-hui. Impact of biosolids on nitrogen use in drought-stressed tall fescue[J]. Journal of Beijing Forestry University, 2014, 36(4): 82-87. DOI: 10.13332/j.cnki.jbfu.2014.04.016
    [9]SHI Zheng, SHI Sheng-qing, ZHANG Zhi-xiang, GAO Rong-fu, XIAO Wen-fa. Effects of drought and excess salt stress on characteristics of chlorophyll fluorescence of leaves in Haloxylon ammodendron.[J]. Journal of Beijing Forestry University, 2012, 34(3): 20-25.
    [10]CHEN Ming-tao, ZHAO Zhong. Effects of drought on root characteristics and mass allocation in each part of seedlings of four tree species.[J]. Journal of Beijing Forestry University, 2011, 33(1): 16-22.
  • Cited by

    Periodical cited type(9)

    1. 吴玮婷,王雨,高广磊,张英,丁国栋,曹红雨. 土壤微生物膜对沙生植物幼苗光合和荧光特性的影响. 干旱区研究. 2024(02): 272-283 .
    2. 姜霞,周炳煌,袁丛军,丁访军. 马尾松林下3种药用植物光合和叶绿素荧光特征. 贵州林业科技. 2024(04): 38-44 .
    3. 潘梦婷,张德怀,高娜,徐铭泽,李鑫豪,田赟,刘鹏,贾昕,查天山. 荆条叶片最大水分利用效率的季节变化及其环境调控. 北京林业大学学报. 2023(06): 52-61 . 本站查看
    4. 靳川,蒋燕,李鑫豪,徐铭泽,高圣杰,魏宁宁,贾昕,田赟,查天山. 毛乌素沙地油蒿光系统Ⅱ多时间尺度的环境响应特征. 农业工程学报. 2021(02): 152-160 .
    5. 秦璐,张雯,易鸳鸯,邢瀚晨,王海潇,祖力克尔江·阿布都热西提. 骆驼刺叶绿素荧光特性对不同程度干旱处理的响应. 环境与发展. 2021(01): 162-167 .
    6. 侯向飞,商靓婷,张立朝,郭圣茂. 不同生境掌叶覆盆子叶绿素荧光参数比较研究. 南方林业科学. 2021(03): 33-36 .
    7. 张细林,红雨,吴永胜. 库布齐沙漠油蒿灌丛水分利用来源对降雨事件的响应. 内蒙古师范大学学报(自然科学汉文版). 2021(06): 547-553 .
    8. 刘文剑,金建儿,李彦杰,谭梓峰,姜景民,刘军. 水分和氮磷配比施肥对毛红椿幼苗生长、养分分配及叶绿素荧光特性的影响. 西部林业科学. 2021(06): 83-90+102 .
    9. 靳川,李鑫豪,蒋燕,徐铭泽,田赟,刘鹏,贾昕,查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制. 植物生态学报. 2021(08): 870-879 .

    Other cited types(10)

Catalog

    Article views (2162) PDF downloads (81) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return