Citation: | Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040 |
[1] |
张云中, 祁丽君, 王沙生.油松球花发端期的研究[J].北京林业大学学报, 1990, 12(4): 57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199004008.htm
Zhang Y Z, Qi L J, Wang S S. The study of cone initiation period in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 1990, 12(4): 57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199004008.htm
|
[2] |
Bluemel M, Dally N, Jung C. Flowering time regulation in crops: what did we learn from Arabidopsis?[J]. Current Opinion in Biotechnology, 2015, 32: 121-129. doi: 10.1016/j.copbio.2014.11.023
|
[3] |
Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences, 2005, 102(21): 7748-7753. doi: 10.1073/pnas.0500932102
|
[4] |
Liu Y Y, Yang K Z, Wei X X, et al. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution[J]. New Phytologist, 2016, 212(3): 730-744. doi: 10.1111/nph.14066
|
[5] |
Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497: 579-584. doi: 10.1038/nature12211
|
[6] |
Gyllenstrand N, Clapham D, Källman T, et al. A Norway spruce FLOWERING LOCUS T homologs implicated in control of growth rhythm in conifers[J]. Plant Physiology, 2007, 144(1): 248-257. https://www.jstor.org/stable/40065336
|
[7] |
Karlgren A, Gyllenstrand N, Källman T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution[J/OL]. Plant Physiology, 2011[2017-10-21]. https://doi.org/10.1104/pp.111.176206.
|
[8] |
Klintenäs M, Pin P A, Benlloch R, et al. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage[J]. New Phytologist, 2012, 196(4): 1260-1273. doi: 10.1111/j.1469-8137.2012.04332.x
|
[9] |
Asante D K A, Yakovlev I A, Fossdal C G, et al. Gene expression changes during short day induced terminal bud formation in Norway spruce[J]. Plant, Cell & Environment, 2011, 34(2): 332-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24fbeebe42c1ac5fbeae811a046b87af
|
[10] |
Karlgren A, Gyllenstrand N, Clapham D, et al. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce[J]. Plant Physiology, 2013, 163(2): 792-803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fdce970d160a2e5d4d6622bf77528c
|
[11] |
Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX[J/OL]. Current Protocols in Bioinformatics, 2003[2017-10-21]. http://doi.org/10.1002/0471250953.bi0203s00.
|
[12] |
Sohpal V K, Dey A, Singh A. MEGA biocentric software for sequence and phylogenetic analysis: a review[J]. International Journal of Bioinformatics Research and Applications, 2010, 6(3): 230-240. http://cn.bing.com/academic/profile?id=f85918849d9d9ce71ab2c4888bc9cffc&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
Niu S H, Yuan H W, Sun X R, et al. A transcriptomics investigation into pine reproductive organ development[J]. New Phytologist, 2016, 209(3): 1278-1289. doi: 10.1111/nph.2016.209.issue-3
|
[14] |
Bray N L, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification[J]. Nature Biotechnology, 2016, 34(5): 525-527. doi: 10.1038/nbt.3519
|
[15] |
Ho W W H, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T[J/OL]. The Plant Cell, 2014[2017-10-06]. https://doi.org/10.1105/tpc.113.115220.
|
[16] |
Singh R K, Svystun T, AlDahmash B, et al. Photoperiod-and temperature-mediated control of phenology in trees-a molecular perspective[J]. New Phytologist, 2017, 213(2): 511-524. doi: 10.1111/nph.14346
|
[17] |
Bouché F, D'Aloia M, Tocquin P, et al. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana[J]. Scientific Reports, 2016, 6(4): 29042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926122/
|
[18] |
Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316: 1030-1033. doi: 10.1126/science.1141752
|
[19] |
Takala H, Björling A, Berntsson O, et al. Signal amplification and transduction in phytochrome photosensors[J]. Nature, 2014, 509: 245-248. doi: 10.1038/nature13310
|
1. |
朱梅彩,刘子腾,甘沛华,李培玲,纵丹,何承忠. 不同光质对3种松树种子萌发及幼苗生长与HY5基因表达的影响. 西南林业大学学报(自然科学). 2025(01): 10-17 .
![]() | |
2. |
张煜,刘阳,于文杰,房克凤,张卿,曹庆芹,邢宇,秦岭. FT/TFL1-like基因在板栗一次花和二次花发育中的表达分析. 分子植物育种. 2022(04): 1137-1144 .
![]() |