Citation: | Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040 |
[1] |
张云中, 祁丽君, 王沙生.油松球花发端期的研究[J].北京林业大学学报, 1990, 12(4): 57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199004008.htm
Zhang Y Z, Qi L J, Wang S S. The study of cone initiation period in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 1990, 12(4): 57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY199004008.htm
|
[2] |
Bluemel M, Dally N, Jung C. Flowering time regulation in crops: what did we learn from Arabidopsis?[J]. Current Opinion in Biotechnology, 2015, 32: 121-129. doi: 10.1016/j.copbio.2014.11.023
|
[3] |
Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering[J]. Proceedings of the National Academy of Sciences, 2005, 102(21): 7748-7753. doi: 10.1073/pnas.0500932102
|
[4] |
Liu Y Y, Yang K Z, Wei X X, et al. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution[J]. New Phytologist, 2016, 212(3): 730-744. doi: 10.1111/nph.14066
|
[5] |
Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature, 2013, 497: 579-584. doi: 10.1038/nature12211
|
[6] |
Gyllenstrand N, Clapham D, Källman T, et al. A Norway spruce FLOWERING LOCUS T homologs implicated in control of growth rhythm in conifers[J]. Plant Physiology, 2007, 144(1): 248-257. https://www.jstor.org/stable/40065336
|
[7] |
Karlgren A, Gyllenstrand N, Källman T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution[J/OL]. Plant Physiology, 2011[2017-10-21]. https://doi.org/10.1104/pp.111.176206.
|
[8] |
Klintenäs M, Pin P A, Benlloch R, et al. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage[J]. New Phytologist, 2012, 196(4): 1260-1273. doi: 10.1111/j.1469-8137.2012.04332.x
|
[9] |
Asante D K A, Yakovlev I A, Fossdal C G, et al. Gene expression changes during short day induced terminal bud formation in Norway spruce[J]. Plant, Cell & Environment, 2011, 34(2): 332-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24fbeebe42c1ac5fbeae811a046b87af
|
[10] |
Karlgren A, Gyllenstrand N, Clapham D, et al. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce[J]. Plant Physiology, 2013, 163(2): 792-803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fdce970d160a2e5d4d6622bf77528c
|
[11] |
Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX[J/OL]. Current Protocols in Bioinformatics, 2003[2017-10-21]. http://doi.org/10.1002/0471250953.bi0203s00.
|
[12] |
Sohpal V K, Dey A, Singh A. MEGA biocentric software for sequence and phylogenetic analysis: a review[J]. International Journal of Bioinformatics Research and Applications, 2010, 6(3): 230-240. http://cn.bing.com/academic/profile?id=f85918849d9d9ce71ab2c4888bc9cffc&encoded=0&v=paper_preview&mkt=zh-cn
|
[13] |
Niu S H, Yuan H W, Sun X R, et al. A transcriptomics investigation into pine reproductive organ development[J]. New Phytologist, 2016, 209(3): 1278-1289. doi: 10.1111/nph.2016.209.issue-3
|
[14] |
Bray N L, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification[J]. Nature Biotechnology, 2016, 34(5): 525-527. doi: 10.1038/nbt.3519
|
[15] |
Ho W W H, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T[J/OL]. The Plant Cell, 2014[2017-10-06]. https://doi.org/10.1105/tpc.113.115220.
|
[16] |
Singh R K, Svystun T, AlDahmash B, et al. Photoperiod-and temperature-mediated control of phenology in trees-a molecular perspective[J]. New Phytologist, 2017, 213(2): 511-524. doi: 10.1111/nph.14346
|
[17] |
Bouché F, D'Aloia M, Tocquin P, et al. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana[J]. Scientific Reports, 2016, 6(4): 29042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926122/
|
[18] |
Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316: 1030-1033. doi: 10.1126/science.1141752
|
[19] |
Takala H, Björling A, Berntsson O, et al. Signal amplification and transduction in phytochrome photosensors[J]. Nature, 2014, 509: 245-248. doi: 10.1038/nature13310
|
1. |
林鸿裕,卢桂宁. 基于模糊逻辑综合评判的垃圾处理厂选址仿真. 计算机仿真. 2024(01): 513-517 .
![]() | |
2. |
刘子晴,葛韵宇. 北京第二道绿化隔离地区空间潜力分析及郊野公园选址研究. 北京规划建设. 2024(01): 40-45 .
![]() | |
3. |
黄友慧,辛儒鸿,李凯. 红枫湖镇生态环境质量评价及修复优先区识别研究. 西南林业大学学报(自然科学). 2024(04): 64-72 .
![]() | |
4. |
王菲,孙晨,姜雁林,马晓燕,冯丽. 北京市第二道绿化隔离带地区生态敏感性评价. 北京农学院学报. 2023(02): 105-110 .
![]() | |
5. |
刘烨琪. 基于情景规划的杭州郊野公园选址研究. 现代园艺. 2023(19): 99-102 .
![]() | |
6. |
葛韵宇,李雄. 基于碳汇和游憩服务协同提升的北京市第二道绿化隔离地区郊野公园环空间布局优化. 北京林业大学学报. 2022(10): 142-154 .
![]() |