• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Dongtao, Liu Jinhao, Wang Dian, Li Dawei. Optimization on the obstacle crossing ability and position of a forestry chassis with double-cylinder wheeled-legs[J]. Journal of Beijing Forestry University, 2018, 40(6): 117-124. DOI: 10.13332/j.1000-1522.20180092
Citation: Han Dongtao, Liu Jinhao, Wang Dian, Li Dawei. Optimization on the obstacle crossing ability and position of a forestry chassis with double-cylinder wheeled-legs[J]. Journal of Beijing Forestry University, 2018, 40(6): 117-124. DOI: 10.13332/j.1000-1522.20180092

Optimization on the obstacle crossing ability and position of a forestry chassis with double-cylinder wheeled-legs

More Information
  • Received Date: March 20, 2018
  • Revised Date: April 17, 2018
  • Published Date: May 31, 2018
  • ObjectiveThe obstacle crossing performance and adaptability to different terrain are most important factors for the technical characteristics of the chassis that is the key part of forestry equipment, also they are the key reasons to decide whether the forestry equipment could work in the forest. Since the typical plantations in our country have many short obstacles and gullies, the obstacle crossing performance and adaptability of traditional chassis are not good enough to work in the complex terrain.
    MethodFor improving the obstacle crossing performance, a method based on D-H theory was used to establish a kinematics model for a new type of six-wheeled-leg forestry chassis with levelling initiative gait. By space geometry coordinates transformation method, single-cylinder wheeled-legs mechanism was compared with double-cylinder wheeled-legs mechanism in obstacle crossing ability.
    ResultIt was concluded that the obstacle crossing ability of double-cylinder wheeled-legs mechanism was always greater than single-cylinder wheeled-legs mechanism. The optimum arrangement of double-cylinder position was achieved with the D-H kinematics solution method. In contrast to prototype test, the highest obstacle crossing numerical similarities of theory analysis and simulation were 99.7% and 97.8%, respectively. The obstacle crossing height of wheeled-legs of chassis was much better than before, and could reach 285.9mm. So it is completely suitable for the application in the field of forestry and a typical unknown terrain. The correctness of the theoretical research method was validated.
    ConclusionThis paper provides theory basis for the research on the double-cylinder wheeled-legs mechanism motion characteristics, the obstacle crossing ability of chassis, and the large-scale development and application of intelligent forestry mechanical chassis.
  • [1]
    迟宝山, 权清达, 刘西侠, 等.轮腿式行走系统研究综述[J].农业装备与车辆工程, 2013, 51(6): 46-49. doi: 10.3969/j.issn.1673-3142.2013.06.014

    Chi B S, Quan Q D, Liu X X, et al. Research on wheel-legged walking system[J]. Agricultural Equipment & Vehicle Engineering, 2013, 51(6): 46-49. doi: 10.3969/j.issn.1673-3142.2013.06.014
    [2]
    谢霞, 康少华, 侍才洪.复杂地形移动底盘技术研究[J].工程机械, 2015, 46(3): 45-52. doi: 10.3969/j.issn.1000-1212.2015.03.010

    Xie X, Kang S H, Shi C H. Study on mobile chassis traveling in complex terrains[J]. Construction Machinery and Equipment, 2015, 46(3): 45-52. doi: 10.3969/j.issn.1000-1212.2015.03.010
    [3]
    刘凯.仿人机器人运动控制系统和步态规划算法的研究及实现[D].上海: 上海交通大学, 2010.

    Liu K. Motion control and gait planning for humanoid robot[D]. Shanghai: Shanghai Jiao Tong University, 2010.
    [4]
    李涛.机器人规划与智能控制的研究及其仿真[D].淮南: 安徽理工大学, 2009.

    Li T. Research and simulation about robot planning and intelligent control[D]. Huainan: Anhui University of Science and Technology, 2009.
    [5]
    赵之光.基于SVM的双足机器人步态自学习控制方法[D].广州: 广东工业大学, 2012.

    Zhao Z G. Research of biped robot gait self-learning control algorithms based on SVM[D]. Guangzhou: Guangdong University of Technology, 2012.
    [6]
    孟廷豪.基于模糊控制的机器人避障研究[D].太原: 中北大学, 2013.

    Meng T H. The study of obstacle avoidance system based on fuzzy control for mobile robot[D]. Taiyuan: North University of China, 2013.
    [7]
    江道根.六自由度并联机器人RBF神经网络PID控制研究[D].镇江: 江苏大学, 2010.

    Jiang D G. Study on RBFNN PID control for a 6-DOF parallel robot[D]. Zhenjiang: Jiangsu University, 2010.
    [8]
    Han D T, Liu J H, Kan J M, et al. Analysis of a kinematic model for a forestry six-wheeled luffing articulatedvehicle chassis[J]. Open Mechanical Engineering Journal, 2015, 9(1): 670-677. doi: 10.2174/1874155X01509010670
    [9]
    蔡自兴.机器人学基础[M].北京:机械工业出版社, 2009: 6.

    Cai Z X. Fundamentals of robotics[M]. Beijing:Engineering Industry Press, 2009: 6.
    [10]
    于靖军, 刘辛军, 丁希仑, 等.机器人机构学的数学基础[M].北京:机械工业出版社, 2008: 7.

    Yu J J, liu X J, Ding X L, et al. Mathematical foundations of robotic mechanisms[M]. Beijing: Engineering Industry Press, 2008: 7.
    [11]
    Craig J J.机器人学导论[M].北京:机械工业出版社, 2006.

    Craig J J. Introduction to robotics mechanics and control[M]. Beijing: Engineering Industry Press, 2006.
    [12]
    宋小康, 谈大龙, 吴镇炜, 等.全地形轮式移动机器人运动学建模与分析[J].机械工程学报, 2008, 44(6): 148-154. doi: 10.3321/j.issn:0577-6686.2008.06.023

    Song X K, Tan D L, Wu Z W, et al. Kinematics modeling and analyses of all-terrain wheeled mobile robots[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 148-154. doi: 10.3321/j.issn:0577-6686.2008.06.023
    [13]
    于涌川, 原魁, 邹伟.全驱动轮式机器人越障过程模型及影响因素分析[J].机器人, 2008, 30(1): 1-6. doi: 10.3321/j.issn:1002-0446.2008.01.001

    Yu Y C, Yuan K, Zou W. Dynamic model of all-wheel-drive mobile robot climbing over obstacles and analysis on its influential factors[J]. Robot, 2008, 30(1): 1-6. doi: 10.3321/j.issn:1002-0446.2008.01.001
    [14]
    魏巍.基于区间分析的轮式摆动车身车辆越野性能研究[D].长春: 吉林大学, 2012.

    Wei W. Research on off-road performance of wheeled vehicle with oscillating body based on interval analysis[D]. Changchun: Jilin University, 2012.
    [15]
    韩军, 陈高杰, 王红坚, 等.步行式挖掘机越障能力分析[J].中国工程机械学报, 2005, 3(1): 25-28. doi: 10.3969/j.issn.1672-5581.2005.01.006

    Han J, Chen G J, Wang H J, et al. Climbing ability analysis for walking mobile excavator[J].Chinese Journal of Construction Machinery, 2005, 3(1): 25-28. doi: 10.3969/j.issn.1672-5581.2005.01.006
  • Cited by

    Periodical cited type(7)

    1. 魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 . 本站查看
    2. 李鹏飞,张兴昌,郝明德,崔勇兴,张燕江,朱世雷. 植被恢复对黄土高原矿区重构土壤理化性质、酶活性以及真菌群落的影响. 水土保持通报. 2019(05): 1-7 .
    3. 陆梅,孙向阳,田昆,任玉连,王邵军,王行,彭淑娴. 纳帕海高原湿地不同退化阶段土壤真菌群落结构特征. 北京林业大学学报. 2018(03): 55-65 . 本站查看
    4. 张蓉,于亚军. 煤矸山复垦林地和草地土壤微生物多样性和群落组成的差异及其影响因素. 生态学杂志. 2018(06): 1662-1668 .
    5. 张树萌,黄懿梅,倪银霞,钟祺琪. 宁南山区人工林草对土壤真菌群落的影响. 中国环境科学. 2018(04): 1449-1458 .
    6. 李敏敏,魏天兴,李信良,葛海潮. 黄土区蔡家川流域刺槐人工林林下物种多样性. 浙江农林大学学报. 2018(02): 227-234 .
    7. 刘洋,曾全超,黄懿梅. 基于454高通量测序的黄土高原不同乔木林土壤细菌群落特征. 中国环境科学. 2016(11): 3487-3494 .

    Other cited types(9)

Catalog

    Article views (1918) PDF downloads (23) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return