Citation: | Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141 |
[1] |
Bracciale L, Catini A, Gentile G, et al. Delay tolerant wireless sensor network for animal monitoring: the pink iguana case[C]//Proceedings of international conference on applications in electronics pervading industry, environment and society. Cham: Springer, 2016: 18-26.
|
[2] |
陈善安, 胡春鹤, 张军国, 等.基于无线传感器网络的野生动物图像监测系统设计[J].现代制造技术与装备, 2017(3): 64-66. doi: 10.3969/j.issn.1673-5587.2017.03.030
Chen S A, Hu C H, Zhang J G, et al. Design of wildlife image monitoring system based on wireless sensor networks[J]. Modern Manufacturing Technology and Equipment, 2017(3): 64-66. doi: 10.3969/j.issn.1673-5587.2017.03.030
|
[3] |
Oishi Y, Matsunaga T. Automatic detection of moving wild animals in airborne remote sensing images[C]//2010 IEEE international geoscience and remote sensing symposium. Honolulu: IEEE, 2010: 517-519.
|
[4] |
曾陈颖.面向珍稀野生动物保护的图像监测与识别技术研究[D].北京: 北京林业大学, 2015.
Zeng C Y. Research of image monitoring and identification oriented to rare wild animals protection[D]. Beijing: Beijing Forestry University, 2015.
|
[5] |
Okafor E, Pawara P, Karaaba F, et al. Comparative study between deep learning and bag of visual words for wild-animal recognition[C]//2016 IEEE symposium series on computational intelligence (SSCI). Athens: IEEE, 2017: 1-9.
|
[6] |
Villa A G, Salazar A, Vargas F. Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks[J]. Ecological Informatics, 2017, 41: 24-32. doi: 10.1016/j.ecoinf.2017.07.004
|
[7] |
Yu X Y, Wang J P, Kays R, et al. Automated identification of animal species in camera trap images[J]. EURASIP Journal on Image and Video Processing, 2013, 2013: 52. doi: 10.1186/1687-5281-2013-52
|
[8] |
李力, 林懿伦, 王飞跃, 等.平行学习—机器学习的一个新型理论框架[J].自动化学报, 2017, 43(1): 1-8. doi: 10.3969/j.issn.1003-8930.2017.01.001
Li L, Lin Y L, Wang F Y, et al. Parallel learning: a new framework for machine learning[J]. Acta Automatica Sinica, 2017, 43(1): 1-8. doi: 10.3969/j.issn.1003-8930.2017.01.001
|
[9] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of international conference on neural information processing systems. Lake Tahoe: Curran Associates Inc., 2012: 1097-1105.
|
[10] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014: 23-31. doi: 10.5121/csit.2014.41000
|
[11] |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR). Boston: IEEE, 2015: 1-9.
|
[12] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE conference on computer vision and pattern recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
[13] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017.
|
[14] |
Figueroa K, Camarena-Ibarrola A, García J, et al. Fast automatic detection of wildlife in images from trap cameras[M]//Bayro-Corrochano E, Hancock E. Progress in pattern recognition, image analysis, computer vision, and applications. Cham: Springer, 2014: 940-947.
|
[15] |
Chen G B, Han T X, He Z H, et al. Deep convolutional neural network based species recognition for wild animal monitoring[C]//Proceedings of 2014 IEEE international conference on image processing (ICIP). Paris: IEEE, 2015: 858-862.
|
[16] |
Yang W X, Jin L W, Tao D C, et al. DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition[J]. Pattern Recognition, 2016, 58: 190-203. doi: 10.1016/j.patcog.2016.04.007
|
[17] |
王忠民, 曹洪江, 范琳.一种基于卷积神经网络深度学习的人体行为识别方法[J].计算机科学, 2016, 43(增刊2): 56-58, 87. http://d.old.wanfangdata.com.cn/Periodical/jsjkx2016z2012
Wang Z M, Cao H J, Fan L. Method on human activity recognition based on convolutional neural networks[J]. Computer Science, 2016, 43(Suppl.2): 56-58, 87. http://d.old.wanfangdata.com.cn/Periodical/jsjkx2016z2012
|
[18] |
高震宇, 王安, 刘勇, 等.基于卷积神经网络的鲜茶叶智能分选系统研究[J].农业机械学报, 2017, 48(7): 53-58. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201707007
Gao Z Y, Wang A, Liu Y, et al. Intelligent fresh-tea-leaves sorting system research based on convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201707007
|
[19] |
吴笑鑫, 高良, 闫民, 等.基于多特征融合的花卉种类识别研究[J].北京林业大学学报, 2017, 39(4): 86-93. doi: 10.13332/j.1000-1522.20160367
Wu X X, Gao L, Yan M, et al. Flower species recognition based on fusion of multiple features[J]. Journal of Beijing Forestry University, 2017, 39(4): 86-93. doi: 10.13332/j.1000-1522.20160367
|
[20] |
那顺得力格尔.内蒙古赛罕乌拉国家级自然保护区陆生野生动物保护监测研究[D].北京: 北京林业大学, 2011.
Nasendeleger. Monitoring on wildlife biodiversity at Saihanwula National Nature Reserve[D]. Beijing: Beijing Forestry University, 2011.
|
[21] |
Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
|
[22] |
杨国国, 鲍一丹, 刘子毅.基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J].农业工程学报, 2017, 33(6): 156-162. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201706020
Yang G G, Bao Y D, Liu Z Y. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201706020
|
[23] |
谢将剑, 李文彬, 张军国, 等.基于Chirplet语图特征和深度学习的鸟类物种识别方法[J].北京林业大学学报, 2018, 40(3): 122-127. doi: 10.13332/j.1000-1522.20180008
Xie J J, Li W B, Zhang J G, et al. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. doi: 10.13332/j.1000-1522.20180008
|
[24] |
Girshick R. Fast R-CNN[C]//Proceedings of IEEE international conference on computer vision (ICCV). Santiago: IEEE, 2015: 1440-1448.
|
[1] | Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073 |
[2] | Tu Juncheng, Zhao Dong, Zhao Jian. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142-148. DOI: 10.12171/j.1000-1522.20190276 |
[3] | WANG Xiao-song, HUANG Xin-yuan, FU Hui. Study surveys on tree image extraction in a complex background.[J]. Journal of Beijing Forestry University, 2010, 32(3): 197-203. |
[4] | LI Ming-ze, FAN Wen-yi, ZHANG Yuan-yuan.. Measuring heights of standing trees based on digital photogrammetry.[J]. Journal of Beijing Forestry University, 2009, 31(2): 74-79. |
[5] | LIU Yun-wei, , FENG Zhong-ke, LIU Yong-xia, LI Shu-wei, WANG Hong-liang. Application of total station in digital forestry project.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 306-309. |
[6] | YAO Shan, FENG Zhong-ke, ZANG Shu-ying. Construction of digital forestry ecological project in Shandong, east China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 122-126. |
[7] | ZHANG Hui-ping, CHEN Zhi-bo. Application of distributed database technology in digital forest eco-station[J]. Journal of Beijing Forestry University, 2007, 29(3): 131-135. DOI: 10.13332/j.1000-1522.2007.03.021 |
[8] | HUANG Xin-yuan, WANG Hai. Digital Forestry and its technology and development[J]. Journal of Beijing Forestry University, 2006, 28(6): 142-147. |
[9] | ZHONG Jian, LI Hong-qi, CUI Xiao-peng, LIU Yan, LU Zhen-you, SHEN Shi-jie. Application of the digital speckle correlation method on timber with finger-joints[J]. Journal of Beijing Forestry University, 2006, 28(4): 12-16. |
[10] | BI Hua-xing, TAN Xiu-ying, LI Xiao-yin. Digital terrain analysis based on DEM[J]. Journal of Beijing Forestry University, 2005, 27(2): 49-53. |
1. |
雷相东. 森林生态系统服务多功能性:概念、指标和经营模拟模型. 北京林业大学学报. 2024(05): 1-11 .
![]() | |
2. |
宋磊,金星姬,PUKKALA Timo,李凤日. 长白落叶松人工林多目标经营模式研究. 南京林业大学学报(自然科学版). 2023(02): 150-158 .
![]() | |
3. |
卿东升,张晓芳,李建军,郭瑞,邓巧玲. 基于蜂群–粒子群算法的天然林空间结构优化. 系统仿真学报. 2020(03): 371-381 .
![]() | |
4. |
王露露,刘雪强,王丽霞,马顺兴,马瑞婷,闫东锋. 内黄林场优势树种龄级结构优化调整及评价. 林业资源管理. 2020(01): 47-53 .
![]() | |
5. |
董灵波,蔺雪莹,刘兆刚. 大兴安岭盘古林场森林碳汇木材复合经营规划. 北京林业大学学报. 2020(08): 1-11 .
![]() | |
6. |
张会儒,雷相东,李凤日. 中国森林经理学研究进展与展望. 林业科学. 2020(09): 130-142 .
![]() | |
7. |
董灵波,刘兆刚. 基于森林空间规划问题的模拟退火算法参数敏感性研究. 林业科学研究. 2018(04): 9-17 .
![]() |