• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141
Citation: Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141

Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN

More Information
  • Received Date: April 20, 2018
  • Revised Date: June 20, 2018
  • Published Date: July 31, 2018
  • ObjectiveThe use of infrared automatic sensing cameras for image surveillance of wildlife is an effective method for the protection and management of wildlife. In order to solve the problem of low accuracy of the automatic identification of wildlife monitoring images caused by the wild complex background environment, a method based on the region of interest (ROI) and convolutional neural network (CNN) was proposed.
    MethodImages of five kinds of national protected terrestrial animals such as red deer, goral, pheasant, badger, and wild boar taken in Saihanwula National Nature Reserve, Inner Mongolia of northern China by an infrared automatic sensing camera were used as experimental samples. Using target detection based on regression algorithm, the wild animal images in regional monitoring detection segmentation generated ROI images to overcome the interference of background information on wild animal identification; then perform affine transformations and cropping to achieve random sample data augmentation; proposing a global local VGG16 based on dual channel network to train sample images and use a classifier to output the recognition result finally. At the same time, a dual-channel network model based on VGG19 was constructed to train sample images and compared with the proposed model. The sample images were trained by the algorithm of this paper and VGG16, R-CNN and Fast R-CNN, respectively. The recognition results under different algorithms were compared.
    ResultResults showed that the mean average precision (MAP) of the test set was 0.912 compared with the other models and algorithms when sample images were trained by the model in the paper.
    ConclusionCompared with other algorithms, the species identification model presented in this paper is more suitable for species identification of wildlife monitoring images under complex backgrounds, and can obtain higher MAP and better recognition effects.
  • [1]
    Bracciale L, Catini A, Gentile G, et al. Delay tolerant wireless sensor network for animal monitoring: the pink iguana case[C]//Proceedings of international conference on applications in electronics pervading industry, environment and society. Cham: Springer, 2016: 18-26.
    [2]
    陈善安, 胡春鹤, 张军国, 等.基于无线传感器网络的野生动物图像监测系统设计[J].现代制造技术与装备, 2017(3): 64-66. doi: 10.3969/j.issn.1673-5587.2017.03.030

    Chen S A, Hu C H, Zhang J G, et al. Design of wildlife image monitoring system based on wireless sensor networks[J]. Modern Manufacturing Technology and Equipment, 2017(3): 64-66. doi: 10.3969/j.issn.1673-5587.2017.03.030
    [3]
    Oishi Y, Matsunaga T. Automatic detection of moving wild animals in airborne remote sensing images[C]//2010 IEEE international geoscience and remote sensing symposium. Honolulu: IEEE, 2010: 517-519.
    [4]
    曾陈颖.面向珍稀野生动物保护的图像监测与识别技术研究[D].北京: 北京林业大学, 2015.

    Zeng C Y. Research of image monitoring and identification oriented to rare wild animals protection[D]. Beijing: Beijing Forestry University, 2015.
    [5]
    Okafor E, Pawara P, Karaaba F, et al. Comparative study between deep learning and bag of visual words for wild-animal recognition[C]//2016 IEEE symposium series on computational intelligence (SSCI). Athens: IEEE, 2017: 1-9.
    [6]
    Villa A G, Salazar A, Vargas F. Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks[J]. Ecological Informatics, 2017, 41: 24-32. doi: 10.1016/j.ecoinf.2017.07.004
    [7]
    Yu X Y, Wang J P, Kays R, et al. Automated identification of animal species in camera trap images[J]. EURASIP Journal on Image and Video Processing, 2013, 2013: 52. doi: 10.1186/1687-5281-2013-52
    [8]
    李力, 林懿伦, 王飞跃, 等.平行学习—机器学习的一个新型理论框架[J].自动化学报, 2017, 43(1): 1-8. doi: 10.3969/j.issn.1003-8930.2017.01.001

    Li L, Lin Y L, Wang F Y, et al. Parallel learning: a new framework for machine learning[J]. Acta Automatica Sinica, 2017, 43(1): 1-8. doi: 10.3969/j.issn.1003-8930.2017.01.001
    [9]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of international conference on neural information processing systems. Lake Tahoe: Curran Associates Inc., 2012: 1097-1105.
    [10]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014: 23-31. doi: 10.5121/csit.2014.41000
    [11]
    Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR). Boston: IEEE, 2015: 1-9.
    [12]
    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE conference on computer vision and pattern recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
    [13]
    Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017.
    [14]
    Figueroa K, Camarena-Ibarrola A, García J, et al. Fast automatic detection of wildlife in images from trap cameras[M]//Bayro-Corrochano E, Hancock E. Progress in pattern recognition, image analysis, computer vision, and applications. Cham: Springer, 2014: 940-947.
    [15]
    Chen G B, Han T X, He Z H, et al. Deep convolutional neural network based species recognition for wild animal monitoring[C]//Proceedings of 2014 IEEE international conference on image processing (ICIP). Paris: IEEE, 2015: 858-862.
    [16]
    Yang W X, Jin L W, Tao D C, et al. DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition[J]. Pattern Recognition, 2016, 58: 190-203. doi: 10.1016/j.patcog.2016.04.007
    [17]
    王忠民, 曹洪江, 范琳.一种基于卷积神经网络深度学习的人体行为识别方法[J].计算机科学, 2016, 43(增刊2): 56-58, 87. http://d.old.wanfangdata.com.cn/Periodical/jsjkx2016z2012

    Wang Z M, Cao H J, Fan L. Method on human activity recognition based on convolutional neural networks[J]. Computer Science, 2016, 43(Suppl.2): 56-58, 87. http://d.old.wanfangdata.com.cn/Periodical/jsjkx2016z2012
    [18]
    高震宇, 王安, 刘勇, 等.基于卷积神经网络的鲜茶叶智能分选系统研究[J].农业机械学报, 2017, 48(7): 53-58. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201707007

    Gao Z Y, Wang A, Liu Y, et al. Intelligent fresh-tea-leaves sorting system research based on convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201707007
    [19]
    吴笑鑫, 高良, 闫民, 等.基于多特征融合的花卉种类识别研究[J].北京林业大学学报, 2017, 39(4): 86-93. doi: 10.13332/j.1000-1522.20160367

    Wu X X, Gao L, Yan M, et al. Flower species recognition based on fusion of multiple features[J]. Journal of Beijing Forestry University, 2017, 39(4): 86-93. doi: 10.13332/j.1000-1522.20160367
    [20]
    那顺得力格尔.内蒙古赛罕乌拉国家级自然保护区陆生野生动物保护监测研究[D].北京: 北京林业大学, 2011.

    Nasendeleger. Monitoring on wildlife biodiversity at Saihanwula National Nature Reserve[D]. Beijing: Beijing Forestry University, 2011.
    [21]
    Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [22]
    杨国国, 鲍一丹, 刘子毅.基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J].农业工程学报, 2017, 33(6): 156-162. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201706020

    Yang G G, Bao Y D, Liu Z Y. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201706020
    [23]
    谢将剑, 李文彬, 张军国, 等.基于Chirplet语图特征和深度学习的鸟类物种识别方法[J].北京林业大学学报, 2018, 40(3): 122-127. doi: 10.13332/j.1000-1522.20180008

    Xie J J, Li W B, Zhang J G, et al. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. doi: 10.13332/j.1000-1522.20180008
    [24]
    Girshick R. Fast R-CNN[C]//Proceedings of IEEE international conference on computer vision (ICCV). Santiago: IEEE, 2015: 1440-1448.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Tu Juncheng, Zhao Dong, Zhao Jian. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142-148. DOI: 10.12171/j.1000-1522.20190276
    [3]WANG Xiao-song, HUANG Xin-yuan, FU Hui. Study surveys on tree image extraction in a complex background.[J]. Journal of Beijing Forestry University, 2010, 32(3): 197-203.
    [4]LI Ming-ze, FAN Wen-yi, ZHANG Yuan-yuan.. Measuring heights of standing trees based on digital photogrammetry.[J]. Journal of Beijing Forestry University, 2009, 31(2): 74-79.
    [5]LIU Yun-wei, , FENG Zhong-ke, LIU Yong-xia, LI Shu-wei, WANG Hong-liang. Application of total station in digital forestry project.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 306-309.
    [6]YAO Shan, FENG Zhong-ke, ZANG Shu-ying. Construction of digital forestry ecological project in Shandong, east China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 122-126.
    [7]ZHANG Hui-ping, CHEN Zhi-bo. Application of distributed database technology in digital forest eco-station[J]. Journal of Beijing Forestry University, 2007, 29(3): 131-135. DOI: 10.13332/j.1000-1522.2007.03.021
    [8]HUANG Xin-yuan, WANG Hai. Digital Forestry and its technology and development[J]. Journal of Beijing Forestry University, 2006, 28(6): 142-147.
    [9]ZHONG Jian, LI Hong-qi, CUI Xiao-peng, LIU Yan, LU Zhen-you, SHEN Shi-jie. Application of the digital speckle correlation method on timber with finger-joints[J]. Journal of Beijing Forestry University, 2006, 28(4): 12-16.
    [10]BI Hua-xing, TAN Xiu-ying, LI Xiao-yin. Digital terrain analysis based on DEM[J]. Journal of Beijing Forestry University, 2005, 27(2): 49-53.
  • Cited by

    Periodical cited type(7)

    1. 雷相东. 森林生态系统服务多功能性:概念、指标和经营模拟模型. 北京林业大学学报. 2024(05): 1-11 . 本站查看
    2. 宋磊,金星姬,PUKKALA Timo,李凤日. 长白落叶松人工林多目标经营模式研究. 南京林业大学学报(自然科学版). 2023(02): 150-158 .
    3. 卿东升,张晓芳,李建军,郭瑞,邓巧玲. 基于蜂群–粒子群算法的天然林空间结构优化. 系统仿真学报. 2020(03): 371-381 .
    4. 王露露,刘雪强,王丽霞,马顺兴,马瑞婷,闫东锋. 内黄林场优势树种龄级结构优化调整及评价. 林业资源管理. 2020(01): 47-53 .
    5. 董灵波,蔺雪莹,刘兆刚. 大兴安岭盘古林场森林碳汇木材复合经营规划. 北京林业大学学报. 2020(08): 1-11 . 本站查看
    6. 张会儒,雷相东,李凤日. 中国森林经理学研究进展与展望. 林业科学. 2020(09): 130-142 .
    7. 董灵波,刘兆刚. 基于森林空间规划问题的模拟退火算法参数敏感性研究. 林业科学研究. 2018(04): 9-17 .

    Other cited types(8)

Catalog

    Article views (2689) PDF downloads (83) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return