• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yunqi, Gao Shilun, Wei Xingbiao, Shi Wenhui, Ma Zhong, Su Shuchai. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves[J]. Journal of Beijing Forestry University, 2019, 41(4): 32-40. DOI: 10.13332/j.1000-1522.20180163
Citation: Zhang Yunqi, Gao Shilun, Wei Xingbiao, Shi Wenhui, Ma Zhong, Su Shuchai. Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves[J]. Journal of Beijing Forestry University, 2019, 41(4): 32-40. DOI: 10.13332/j.1000-1522.20180163

Effects of photosynthetic models on the calculation results of photosynthetic response parameters in Sapindus mukorossi leaves

More Information
  • Received Date: May 16, 2018
  • Revised Date: November 27, 2018
  • Available Online: April 29, 2019
  • Published Date: March 31, 2019
  • ObjectiveThe aim of this study was to explore the effects of photosynthetic models on the results of photosynthetic response parameters ’ values of leaves in different parts of Sapindus mukorossi canopy, and to obtain appropriate application model and reasonable values.
    MethodIn this study, S. mukorossi trees with stable fruiting stage were selected as the test trees in Jianning County of Fujian Province, southern China for determining photosynthetic response parameters of leaves in different parts of canopy. The rectangular hyperbolic model (RHM), non-rectangular hyperbolic model (NRHM), modified rectangular hyperbolic model (MRHM), and modified exponential model (MEM) were used for fitting the Pn-PAR response curves. The rectangular hyperbolic model (RHM), Michaelis-Menten model (MMM), and modified rectangular hyperbolic model (MRHM) were used for fitting the Pn-Ci response curves. The fitting accuracy of the models was tested by comparing mean square errors and determinant coefficients. The differences of photosynthetic response parameters ’ values among different models and different parts of canopy were examined by Duncan multiple comparison method and the data were also analyzed with ANOVA.
    Result(1) The fitting accuracy of the 4 models for Pn-PAR response curve was as follows: MRHM > MEM > NRHM > RHM. The 3 models for Pn-Ci response curve produced the similar results: MRHM > RHM/MMM. (2) The significant difference of photosynthetic response parameters’ values among different layers varied by different models and the difference of these values among different directions was not significant. (3) The influence of different models on α(I), Pnmax(I), LSP, Rd, Pnmax(C) and CiSP was greater, the influence of different layers on LCP, α(C), CiCP and Rp was greater, while the influence of different directions on these all response parameters was little. The values of LSP, CiSP, α(C) and CiCP were also significantly influenced by interaction.
    ConclusionCompared with other models, MRHM could be better for fitting the photosynthetic response curve and obtaining more accurate values. The influence of models on the values of all photosynthetic response parameters was very significant, so the screening of models was important.
  • [1]
    Larbi A, Vázquez S, Eljendoubi H, et al. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation[J]. Photosynthesis Research, 2015, 123(2): 141−155. doi: 10.1007/s11120-014-0052-2
    [2]
    Cano F J, Sánchez-Gómez D, Rodríguez-Calcerrada J, et al. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers[J]. Plant, Cell & Environment, 2013, 36(11): 1961−1980. doi: 10.1111/pce.12103
    [3]
    郝建, 潘丽琴, 潘启龙, 等. 格木人工林不同冠层光合特征[J]. 浙江农林大学学报, 2017, 34(5):871−877. doi: 10.11833/j.issn.2095-0756.2017.05.014

    Hao J, Pan L Q, Pan Q L, et al. Photosynthetic characteristics in different canopy positions of an Erythrophleum fordii plantation[J]. Journal of Zhejiang A&F University, 2017, 34(5): 871−877. doi: 10.11833/j.issn.2095-0756.2017.05.014
    [4]
    Lombardini L, Restrepo-Diaz H, Volder A. Photosynthetic light response and epidermal characteristics of sun and shade pecan leaves[J]. Journal of the Americal Society for Horticultural Science, 2009, 134(30): 372−378. doi: 10.1051/fruits/2009013
    [5]
    冷寒冰, 秦俊, 叶康, 等. 不同光照环境下荷花叶片光合光响应模型比较[J]. 应用生态学报, 2014, 25(10):2855−2860. doi: 10.13287/j.1001-9332.20140801.010

    Leng H B, Qin J, Ye K, et al. Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2855−2860. doi: 10.13287/j.1001-9332.20140801.010
    [6]
    Chen Z Y, Peng Z S, Yang J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L[J]. Photosynthetica, 2011, 49(3): 467−471. doi: 10.1007/s11099-011-0056-5
    [7]
    邓云鹏, 雷静品, 潘磊, 等. 不同种源栓皮栎光响应曲线的模型拟合及参数比较[J]. 生态学杂志, 2016, 35(2):387−394. doi: 10.13292/j.1000-4890.201602.035

    Deng Y P, Lei J P, Pan L, et al. Model fitting of photosynthetic light-response curves in different Quercus variabilis provenances and its parameter comparison[J]. Chinese Journal of Ecology, 2016, 35(2): 387−394. doi: 10.13292/j.1000-4890.201602.035
    [8]
    刘强, 李凤日, 谢龙飞. 人工长白落叶松冠层光合作用−光响应曲线最优模型[J]. 应用生态学报, 2016, 27(8):2420−2428. doi: 10.13287/j.1001-9332.201608.023

    Liu Q, Li F R, Xie L F. Optimal model of photosynthesis-light response curve in canopy of planted Larix olgensistree[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2420−2428. doi: 10.13287/j.1001-9332.201608.023
    [9]
    Gomes-Laranjo J, Coutinho J P, Galhano V, et al. Differences in photosynthetic apparatus of leaves from different sides of the chestnut canopy[J]. Photosynthetica, 2008, 46(1): 63−72. doi: 10.1007/s11099-008-0012-1
    [10]
    赵娜, 李富荣. 温度升高对不同生活型植物光合生理特性的影响[J]. 生态环境学报, 2016, 25(1):60−66.

    Zhao N, Li F R. Effects of enhanced temperature on the photosynthetic characteristics in different life-form plants[J]. Ecology and Environmental Sciences, 2016, 25(1): 60−66.
    [11]
    赖金莉, 陈剑成, 陈凌艳, 等. 凹叶厚朴和无患子光响应特征与叶绿素荧光参数的比较[J]. 福建农林大学学报(自然科学版), 2018, 47(2):174−180.

    Lai J L, Chen J C, Chen L Y, et al. Comparisons on photosynthetic light response characteristics and chlorophyll fluorescence parameters between Magnolia officinalis subsp. biloba and Sapindus mukorossi[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(2): 174−180.
    [12]
    刁松锋, 邵文豪, 董汝湘, 等. 无患子光合生理日变化及其与生理生态因子的关系[J]. 西北植物学报, 2014, 34(4):828−834.

    Diao S F, Shao W H, Dong R X, et al. Diurnal variation of photosynthesis and relationship with the eco-physiological factors of Sapindus mukorossi[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4): 828−834.
    [13]
    Baly E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London, 1935, 149: 596−596.
    [14]
    Thornley J H M. Mathematical models in plant physiology: a quantitative approach to problems in plant and crop physiology[M]//Mathematical models in plant physiology. London: Academic Press, 1976.
    [15]
    Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637−640. doi: 10.1007/s11099-007-0110-5
    [16]
    陈卫英, 陈真勇, 罗辅燕, 等. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2013, 36(12):1277−1285.

    Chen W Y, Chen Z Y, Luo F Y, et al. Comparison between modified exponential model and common models of light-response curve[J]. Chinese Journal of Plant Ecology, 2013, 36(12): 1277−1285.
    [17]
    蔡时青, 许大全. 大豆叶片CO2补偿点和光呼吸的关系[J]. 植物生理学报, 2000, 26(6):545−550. doi: 10.3321/j.issn:1671-3877.2000.06.015

    Cai S Q, Xu D Q. Relationship between the CO2 compensation point and photorespiration in soybean leaves[J]. Acta Photophysiologica Sinica, 2000, 26(6): 545−550. doi: 10.3321/j.issn:1671-3877.2000.06.015
    [18]
    叶子飘, 于强. 光合作用对胞间和大气CO2响应曲线的比较[J]. 生态学杂志, 2009, 28(11):2233−2238.

    Ye Z P, Yu Q. A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations[J]. Chinese Journal of Ecology, 2009, 28(11): 2233−2238.
    [19]
    Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant Cell & Environment, 2006, 15(3): 271−282.
    [20]
    叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012

    Ye Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012
    [21]
    Walker D A, Jarvis P G, Farquhar G D, et al. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1989, 323: 313−326. doi: 10.1098/rstb.1989.0013
    [22]
    廖小锋, 刘济明, 张东凯, 等. 野生小蓬竹的光合光响应曲线及其模型拟合[J]. 中南林业科技大学学报, 2012, 32(3):124−128. doi: 10.3969/j.issn.1673-923X.2012.03.024

    Liao X F, Liu J M, Zhang D K, et al. Model fitting on light response curve of photosynthesis of wild Drepanostachyum luodianense[J]. Journal of Central South University of Forestry & Technology, 2012, 32(3): 124−128. doi: 10.3969/j.issn.1673-923X.2012.03.024
    [23]
    柴胜丰, 唐健民, 杨雪, 等. 4种模型对黄枝油杉光合光响应曲线的拟合分析[J]. 广西科学院学报, 2015, 31(4):286−291. doi: 10.3969/j.issn.1002-7378.2015.04.011

    Chai S F, Tang J M, Yang X, et al. Fitting analysis for 4 photosynthesis light response curve models of Keteleeria calcarea[J]. Journal of Guangxi Academy of Sciences, 2015, 31(4): 286−291. doi: 10.3969/j.issn.1002-7378.2015.04.011
    [24]
    王秀伟, 毛子军. 7个光响应曲线模型对不同植物种的实用性[J]. 植物研究, 2009, 29(1):43−48.

    Wang X W, Mao Z J. Practicability of 7 light responsive curve models to different plant species[J]. Bulletin of Botanical Research, 2009, 29(1): 43−48.
    [25]
    蒋冬月, 钱永强, 费英杰, 等. 柳属植物光合−光响应曲线模型拟合[J]. 核农学报, 2010, 34(6):727−740.

    Jiang D Y, Qiao Y Q, Fei Y J, et al. Modeling photosynthetic light-response curve in Salix L.[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740.
    [26]
    钱莲文, 张新时, 杨智杰, 等. 几种光合作用光响应典型模型的比较研究[J]. 植物科学学报, 2009, 27(2):197−203. doi: 10.3969/j.issn.2095-0837.2009.02.013

    Qian L W, Zhang X S, Yang Z J, et al. Comparison of different light response models for photosynthesis[J]. Journal of Wuhan Botanical Research, 2009, 27(2): 197−203. doi: 10.3969/j.issn.2095-0837.2009.02.013
    [27]
    李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学报, 2005, 22(增刊1):118−127.

    Li L F, Bao W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Bulletin of Botany, 2005, 22(Suppl.1): 118−127.
    [28]
    刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339.

    Liu X J, Ma K P. Plant functional traits-concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339.
    [29]
    Sims D A, Seemann J R, Luo Y. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves[J]. Functional Ecology, 1998, 12(2): 185−194. doi: 10.1046/j.1365-2435.1998.00194.x
    [30]
    Sage R F, Saemann J R. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity in response to reduced light intensity in C4 plants[J]. Plant Physiology, 1993, 102: 21−28. doi: 10.1146/annurev.pp.43.060192.002215
    [31]
    Sui X L, Sun J L, Wang S H, et al. Photosynthetic induction in leaves of two cucumber genotypes differing in sensitivity to low-light stress[J]. African Journal of Biotechnology, 2011, 10(12): 2238−2247.
  • Cited by

    Periodical cited type(8)

    1. 马丹,汤志伟,马小玉,邵尔辉,黄达沧. 基于GEE的中国不同生态系统林火驱动力研究. 应用科学学报. 2024(04): 684-694 .
    2. 张吕成,孙志超,董灵波. 基于Landsat时间序列数据的火烧迹地识别与恢复效果评价. 森林工程. 2024(05): 8-16 .
    3. 侯波,李倩倩,杨艳蓉,张乐英. 基于MODIS数据的2003—2020年西南地区林火随地形因子的动态变化. 生态科学. 2024(05): 131-137 .
    4. 刘海新,钱以临,孔俊杰,张灿,刘韦志. 2003—2019年内蒙古FIRMS_MODIS植被火点时空变化. 林业科技情报. 2023(01): 1-8 .
    5. 崔阳,狄海廷,邢艳秋,常晓晴,单炜. 基于MODIS数据的2001—2018年黑龙江省林火时空分布. 南京林业大学学报(自然科学版). 2021(01): 205-211 .
    6. 吴立志,陈振南,张鹏. 基于随机森林算法的城市火灾风险评估研究. 灾害学. 2021(04): 54-60 .
    7. 孙宝军. 内蒙古电力系统自然灾害链分析. 灾害学. 2020(04): 8-12+47 .
    8. 潘霞,汪季,高永,王祯仪. 基于MODIS数据的阿拉善盟植被指数变化的地形分异性. 生态环境学报. 2019(02): 226-234 .

    Other cited types(9)

Catalog

    Article views (1720) PDF downloads (49) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return