• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zang Xiaorong, Mu Jun, Zhang Xinyu, Lai Zongyuan, Chu Demiao. Research on thermal response characteristics of domestic Quercus variabilis cork[J]. Journal of Beijing Forestry University, 2018, 40(9): 127-133. DOI: 10.13332/j.1000-1522.20180212
Citation: Zang Xiaorong, Mu Jun, Zhang Xinyu, Lai Zongyuan, Chu Demiao. Research on thermal response characteristics of domestic Quercus variabilis cork[J]. Journal of Beijing Forestry University, 2018, 40(9): 127-133. DOI: 10.13332/j.1000-1522.20180212

Research on thermal response characteristics of domestic Quercus variabilis cork

More Information
  • Received Date: July 01, 2018
  • Revised Date: August 13, 2018
  • Published Date: August 31, 2018
  • ObjectiveCork is a kind of natural polymer material with viscoelasticity. Cork products are mostly formed by hot pressing of cork particles after sizing except natural cork stoppers. The melting temperature, glass transition temperature and other thermal transition temperatures of the main chemical components of cork materials have important theoretical reference value for understanding the viscoelasticity of cork and formulating thermal processing technology.
    MethodFirstly, the thermogravimetric analysis of the Quercus variabilis cork was carried out to determine the pyrolysis initiation temperature. Then, three thermal analysis methods, DSC, DMA and TMA, were used to analyze the thermal effect temperature of the domestic Quercus variabilis cork material within the pyrolysis initiation temperature and verify each other.
    ResultThermogravimetric analysis showed that the Quercus variabilis cork did not undergo thermal degradation before 219℃. The melting temperatures of suberin's microcrystalline phases measured by DSC, DMA and TMA were 66℃, 78℃ (1Hz) and 78℃, respectively. The glass transition temperature of the amorphous region of suberin measured by DMA was about 0.7℃, and there was a secondary relaxation transition near -66℃. Each thermal effect temperature was slightly different from that of Quercus suber cork, which was related to the difference in monomer composition and intermolecular force of the chemical components of the two species cork. In addition, due to the corrugations on the radial wall of the cork cell, it was found that the thermal expansion of the cork radial dimension was greater than that of the axial direction under the heating condition.
    ConclusionIn the temperature range before the pyrolysis of Quercus variabilis cork, suberin, the main component of the cork, will undergo different thermal effects, according to which the appropriate cork hot processing temperature can be determined, and the thermoforming of the cork material can be promoted by increasing the viscous flow of the cork.
  • [1]
    张丽丛, 雷亚芳, 常宇婷.栓皮栎软木主要化学成分的分析[J].西北林学院学报, 2009, 24(4): 163-165. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb200904038

    Zhang L C, Lei Y F, Chang Y T.Contents of the main chemical components of cork from Quercus variabilis[J]. Journal of Northwest Forestry University, 2009, 24(4): 163-165. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb200904038
    [2]
    Cordeiro N, Belgacem N M, Gandini A, et al. Cork suberin as a new source of chemicals (2): crystallinity, thermal and rheological properties[J]. Bioresource Technology, 1998, 63(2): 153-158. doi: 10.1016/S0960-8524(97)00073-4
    [3]
    Ferreira R, Garcia H, Sousa A F, et al. Suberin isolation from cork using ionic liquids: characterisation of ensuing products[J]. New Journal of Chemistry, 2012, 36(10): 2014-2024. doi: 10.1039/c2nj40433h
    [4]
    Lagorce-Tachon A, Karbowiak T, Champion D, et al. Mechanical properties of cork: effect of hydration[J]. Materials & Design, 2015, 82: 148-154. http://cn.bing.com/academic/profile?id=a1d6f5498c6e7b8eb18676b11370a24b&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Mano J F. The viscoelastic properties of cork[J]. Journal of Materials Science, 2002, 37(2): 257-263. doi: 10.1023/A:1013635809035
    [6]
    程捷, 闫红强.流变学特性在刨花板热压过程中的应用[J].化工时刊, 2006, 20(6): 55-58. doi: 10.3969/j.issn.1002-154X.2006.06.020

    Cheng J, Yan H Q. Study on rheological characteristic applied in the process of hot-pressing for particleboard[J]. Chemical Industry Times, 2006, 20(6): 55-58. doi: 10.3969/j.issn.1002-154X.2006.06.020
    [7]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 28731—2012: 固体生物质燃料工业分析方法[S].北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine, People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 28731—2012: Proximate analysis of solid biofuels[S]. Beijing: Standards Press of China, 2013.
    [8]
    李方勇, 宋景慧.生物化学组分对生物质型煤燃烧特性影响的实验研究[J].中国电机工程学报, 2011, 31(26): 124-130. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201126019

    Li F Y, Song J H. Experimental study about the effect of biomass chemical composition on the combustion characteristics of bio-briquette[J]. Proceedings of the CSEE, 2011, 31(26): 124-130. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201126019
    [9]
    潘蕊.杨木热解动力学及其固定床热解基础实验研究[D].南京: 南京林业大学, 2014.

    Pan R. The thermogravimetry study of pyrolysis kinetics and fixed bed experimental invesitigation of poplar wood[D]. Nanjing: Nanjing Forestry University, 2014.
    [10]
    Pintor A M A, Silvestre-Albero A M, Ferreira C I A, et al. Textural and surface characterization of cork-based sorbents for the removal of oil from water[J]. Industrial & Engineering Chemistry Research, 2013, 52(46): 16427-16435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c6bdff7cb438126db697c4040b0a6be
    [11]
    Shangguan W W, Chen Z J, Zhao J F, et al. Thermogravimetric analysis of cork and cork components from Quercus variabilis[J]. Wood Science and Technology, 2018, 52(1): 181-192. doi: 10.1007/s00226-017-0959-9
    [12]
    Şen A, Marques A V, Gominho J, et al. Study of thermochemical treatments of cork in the 150-400℃ range using colour analysis and FTIR spectroscopy[J]. Industrial Crops and Products, 2012, 38: 132-138. doi: 10.1016/j.indcrop.2012.01.018
    [13]
    Atanes E, Nieto-Márquez A, Cambra A, et al. Adsorption of SO2 onto waste cork powder-derived activated carbons[J]. Chemical Engineering Journal, 2012, 211-212: 60-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78602743e084b4c473dd8f7a65a21a3c
    [14]
    Şen A, Van den Bulcke J, Defoirdt N, et al. Thermal behaviour of cork and cork components[J]. Thermochimica Acta, 2014, 582: 94-100. doi: 10.1016/j.tca.2014.03.007
    [15]
    刘丽华.纤维素在离子液体中的溶解及均相热塑化改性研究[D].广州: 华南理工大学, 2014.

    Liu L H.Research on the dissolution and homogenous thermoplastic modification of cellulose in ionic liquid[D]. Guangzhou: South China University of Technology, 2014.
    [16]
    Paiva D, Magalhães F D. Dynamic mechanical analysis and creep-recovery behavior of agglomerated cork[J]. European Journal of Wood and Wood Products, 2018, 76(1): 133-141. doi: 10.1007/s00107-017-1158-y
    [17]
    Wagner M.热分析应用基础[M].陆立明, 译.上海: 东华大学出版社, 2011: 154-159.

    Wagner M. Thermal analysis in practice[M]. Lu L M, trans. Shanghai: Donghua University Press, 2011: 154-159.
    [18]
    Lourenço A, Rencoret J, Chemetova C, et al. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L.[J]. Frontiers in Plant Science, 2016, 7: 1612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081372/
    [19]
    吕建雄, 蒋佳荔.木材动态黏弹性基础研究[M].北京:科学出版社, 2015: 59.

    Lü J X, Jiang J L. Study on dynamic viscoelastic basics of wood[M]. Beijing: Science Press, 2015: 59.
    [20]
    过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社, 2002: 33.

    Guo M L. Dynamic mechanical thermal analysis of polymers and composites[M]. Beijing: Chemical Industry Press, 2002: 33.
    [21]
    Oliveira V, Rosa M E, Pereira H. Variability of the compression properties of cork[J]. Wood Science and Technology, 2014, 48(5): 937-948. doi: 10.1007/s00226-014-0651-2
    [22]
    Ferreira J, Pereira H, Şen U, et al. Chemical and cellular features of virgin and reproduction cork from Quercus variabilis[J]. Industrial Crops and Products, 2016, 94: 638-648. doi: 10.1016/j.indcrop.2016.09.038
  • Cited by

    Periodical cited type(9)

    1. 赵宇滨,倪欢,牛晓楠. 基于改进CycleMLP的高分遥感图像采石场识别. 测绘通报. 2023(02): 84-90 .
    2. 李瑞鹏,史常青,杨建英,魏广阔,刘佳琪,奎国娴,艾宪锋,肖飞,苏瑞东. 草原区露天煤矿排土场立地类型划分及生态修复技术筛选(英文). Journal of Resources and Ecology. 2023(04): 757-766 .
    3. 汪文琪,李宗春,付永健,何华,熊峰. 一种多尺度自适应点云坡度滤波算法. 武汉大学学报(信息科学版). 2022(03): 438-446 .
    4. 宋晓鹏,张岩,王志强,邓家勇,王佳希. 无人机摄影测量提取黄土高原切沟参数精度分析. 北京师范大学学报(自然科学版). 2021(05): 606-612 .
    5. 马林飞,倪欢,周子涵. 基于注意力机制的高分遥感图像采石场识别. 测绘通报. 2021(11): 96-100 .
    6. 周小成,王锋克,黄洪宇,冯芝清,肖祥希,李媛. 基于无人机遥感的伐区造林坑穴数量与参数提取. 农业机械学报. 2021(12): 201-206 .
    7. 王美琪,杨建英,孙永康,王高平,谢宇虹. 废弃矿山植被覆盖度无人机遥感快速提取技术. 中国水土保持科学. 2020(02): 130-139 .
    8. 杨宇平,许丽,丰菲,郑雯丹,刘莹. 基于植被重建的宁东矿区煤矸石山立地类型及其特征. 水土保持通报. 2020(03): 202-207 .
    9. 隋成瑶. 环境监测作业中无人机遥感技术的运用研究. 黑龙江环境通报. 2018(04): 78-81 .

    Other cited types(20)

Catalog

    Article views (2095) PDF downloads (57) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return