Citation: | Yao Dandan, Xu Qigang, Yan Xiaowang, Li Yutang. Individual-tree mortality model of Mongolian oak forests based on Bayesian method[J]. Journal of Beijing Forestry University, 2019, 41(9): 1-8. DOI: 10.13332/j.1000-1522.20180260 |
[1] |
刘平, 马履一, 贾黎明, 等. 油松林木枯损率模型研究[J]. 林业资源管理, 2008(2):51−56. doi: 10.3969/j.issn.1002-6622.2008.02.012
Liu P, Ma L Y, Jia L M, et al. Study on tree mortality model for Pinus tabulaeformis plantation[J]. Forest Resources Management, 2008(2): 51−56. doi: 10.3969/j.issn.1002-6622.2008.02.012
|
[2] |
Fahey T J, Battles J J, Wilson G F. Responses of early successional northern hardwood forests to changes in nutrient availability[J]. Ecological Monographs, 1998, 68: 183−212. doi: 10.1890/0012-9615(1998)068[0183:ROESNH]2.0.CO;2
|
[3] |
Kobe R K. Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition[J]. Ecological Monograph, 1996, 66: 181−201. doi: 10.2307/2963474
|
[4] |
Hamilton D. A logistic model of mortality in thinned andunthinned mixed conifer stands of northern Idaho[J]. Forest Science, 1986, 32: 989−1000.
|
[5] |
Wyckoff P H, Clark J S. Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches[J]. Canadian Journal of Forest Research, 2000, 30(1): 156−167. doi: 10.1139/x99-198
|
[6] |
Metcalf C J E, McMahon S M, Clark J S. Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model[J]. Canadian Journal of Forest Research, 2009, 39(9): 1677−1687. doi: 10.1139/X09-083
|
[7] |
Lu L, Wang H, Chhin S, et al. A Bayesian model averaging approach for modelling tree mortality in relation to site, competition and climatic factors for Chinese fir plantations[J]. Forest Ecology and Management, 2019, 440: 169−177.
|
[8] |
Green E J, Roesch F A, Smith A F M, et al. Bayesian estimation for the three-parameter Weibull distribution with tree diameter data[M]. Washington: International Biometric Society, 1994.
|
[9] |
Bullock B P, Boone E L. Deriving tree diameter distributions using Bayesian model averaging[J]. Forest Ecology and Management, 2007, 242(2−3): 127−132. doi: 10.1016/j.foreco.2007.01.024
|
[10] |
Li R X, Stewart B, Weiskittel A. A Bayesian approach for modelling non-linear longitudinal/hierarchical data with random effects in forestry[J]. Forestry, 2012, 85(1): 17−25. doi: 10.1093/forestry/cpr050
|
[11] |
Green E J, Strawderman W E. A Bayesian growth and yield model for slash pine plantations[J]. Journal of Applied Statistics, 1996, 23(2−3): 285−300. doi: 10.1080/02664769624251
|
[12] |
Nystrom K, Stahl G. Forecasting probability distributions of forest yield allowing for a Bayesian approach to management planning[J]. Silva Fennica, 2001, 35(2): 185−201.
|
[13] |
张雄清, 张建国, 段爱国. 基于贝叶斯法估计杉木人工林树高生长模型[J]. 林业科学, 2014, 50(3):69−75.
Zhang X Q, Zhang J G, Duan A G. Tree-height growth model for Chinese fir plantation based on Bayesian method[J]. Scientia Silvae Sinicae, 2014, 50(3): 69−75.
|
[14] |
Zhang X Q, Duan A G, Zhang J G. Estimating tree height-diameter models with the Bayesian method[J/OL]. The Scientific World Journal, 2014: 1−9 [2018−01−06]. https://www.ncbi.nlm.nih.gov/pubmed/24711733.
|
[15] |
Tatsumi S, Owari T. Bayesian modeling of neighborhood competition in uneven-aged mixed-species stands[J]. Formath, 2013, 12: 191−209. doi: 10.15684/formath.12.191
|
[16] |
马武. 蒙古栎林单木生长模型系研究[D]. 北京: 中国林业科学研究院, 2012.
Ma W. Growth model for individual-tree in natural Quercus mongolica forests[D]. Beijing: Chinese Academy of Forestry, 2012.
|
[17] |
Fang Z, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47(3): 287−300.
|
[18] |
Calegario N, Daniels R F, Maestri R, et al. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal eucalyptus plantation case study[J]. Forest Ecology and Management, 2005, 204(1): 11−21. doi: 10.1016/j.foreco.2004.07.051
|
[19] |
Patenaud G, Milne R, Van Oijen M, et al. Integrating remote sensing datasets into ecological modelling: a Bayesian approach[J]. International Journal of Remote Sensing, 2008, 29(5): 1295−1315. doi: 10.1080/01431160701736414
|
[20] |
Klemedtsson L, Jansson P E, Gustafsson D, et al. Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[J]. Biogeochemistry, 2008, 89(1): 61−79. doi: 10.1007/s10533-007-9169-0
|
[21] |
Russell M B. Influence to prior distributions and random effects on count regression models: implications for estimating standing dead tree abundance[J]. Environment and Ecological Statistics, 2015, 22: 145−160. doi: 10.1007/s10651-014-0290-7
|
1. |
邓祥鹏,许芳泽,赵善超,向玮. 基于贝叶斯法的新疆天山云杉树高-胸径模型研究. 北京林业大学学报. 2023(01): 11-20 .
![]() | |
2. |
黄金君,舒清态,席磊,孙杨,刘玥伶. 基于层次贝叶斯法的高山松生物量估测模型. 江苏农业学报. 2022(05): 1265-1271 .
![]() |