• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Yingli, Zhang Shouhong, Chen Mingxiu, Anaer, Jiang Yuchen, Cao Shuning, Xie Chaoshuai. Experimental study on runoff control performances for impervious area disconnection system of sandy loam soil green space in West Mountains of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(6): 111-119. DOI: 10.13332/j.1000-1522.20180262
Citation: Guo Yingli, Zhang Shouhong, Chen Mingxiu, Anaer, Jiang Yuchen, Cao Shuning, Xie Chaoshuai. Experimental study on runoff control performances for impervious area disconnection system of sandy loam soil green space in West Mountains of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(6): 111-119. DOI: 10.13332/j.1000-1522.20180262

Experimental study on runoff control performances for impervious area disconnection system of sandy loam soil green space in West Mountains of Beijing

More Information
  • Received Date: August 09, 2018
  • Revised Date: November 01, 2018
  • Available Online: May 29, 2019
  • Published Date: May 31, 2019
  • ObjectiveThis study aims to explore the major factors impacting the runoff control performances of impervious area disconnection system. The results are expected to provide a data foundation and scientific reference for hydrological design and benefit assessment of impervious area disconnection system in the process of sponge city construction.
    MethodIn April to October 2017, at the Jiufeng artificial rainfall laboratory of Beijing Forestry University, impervious area disconnection system was constructed by filling the soil tank (4 m long × 0.6 m width × 0.25 m height) with sandy loam soil from Beijing West Mountain. Based on the artificial rainfall experiments, the runoff control effects of impervious area disconnection system with different ratios of green space areas (25%, 50% and 75%), green space construction methods (flat and with surface depression depth of 5 cm) and initial soil moisture contents (26%−30% and 35%−38%) were quantitatively evaluated using four indices including delay in initial runoff-yielding and peak discharge generation time, runoff and peak discharge reduction rates.
    ResultThe results showed that the average initial runoff-yielding and peak discharge delay time of the 9 groups of impervious area disconnection system in this experiment were respectively 18 and 8 min, and the average runoff and peak discharge reduction rates were respectively 38.9% and 28.3%. The runoff control efficiency of impervious area disconnection system increased with the ratio of pervious areas. When the ratio of pervious areas increased from 25% to 50% and 75%, the average initial runoff-yielding delay time increased from 15 min to 23 min and 24 min, respectively, and the average delay in peak discharge generation time was 5, 5 and 15 min, respectively, and the average runoff reduction rate increased from 29.4% to 35.1% and 52.2%, respectively. The runoff control efficiency was greatly influenced by the surface depression depths. Impervious area disconnection system with pervious areas surface depression depths of 0 and 5 cm could reduce runoff by 20.3% and 52.3% in average, respectively, and the average peak discharge reduction rates were 12.8% and 35.4%, respectively. The lower the initial soil moisture content of pervious areas (26%−30%) was, the longer the initial runoff-yielding delay time (17 min) was, the higher the runoff and peak discharge reduction rates (44.1% and 39.1%, respectively) were.
    ConclusionImpervious area disconnection system could effectively control runoff in urban areas by slowing down runoff, delaying initial runoff-yielding and peak discharge generation time, reducing runoff and peak discharge.
  • [1]
    Sansalone J, Kuang X, Ranieri V. Permeable pavement as a hydraulic and filtration interface for urban drainage[J]. Journal of Irrigation & Drainage Engineering, 2008, 134(5): 666−674.
    [2]
    Boogaard F, Lucke T, Beecham S. Effect of age of permeable pavements on their infiltration function[J]. Acta Hydrochimica et Hydrobiologica, 2014, 42(2): 146−152.
    [3]
    Booth D B, Jackson C R. Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation[J]. Jawra Journal of the American Water Resources Association, 1997, 33(5): 1077−1090. doi: 10.1111/jawr.1997.33.issue-5
    [4]
    宫永伟, 宋瑞宁, 戚海军, 等. 雨水断接对城市雨洪控制的效果研究[J]. 给水排水, 2014, 40(1):135−138. doi: 10.3969/j.issn.1002-8471.2014.01.034

    Gong Y W, Song R N, Qi H J, et al. Study on effects of urban stormwater control by impervious area disconnection systems[J]. Water & Wastewater Engineering, 2014, 40(1): 135−138. doi: 10.3969/j.issn.1002-8471.2014.01.034
    [5]
    Dietz M E. Low impact development practices: a review of current research and recommendations for future directions[J]. Water Air & Soil Pollution, 2007, 186(1-4): 351−363.
    [6]
    Abbott C L, Comino-Mateos L. In-situ hydraulic performance of a permeable pavement sustainable urban drainage system[J]. Water & Environment Journal, 2010, 17(3): 187−190.
    [7]
    Coutts A M, Tapper N J, Beringer J, et al. Watering our cities: the capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context[J]. Progress in Physical Geography, 2013, 37(1): 2−28. doi: 10.1177/0309133312461032
    [8]
    苏义敬, 王思思, 车伍, 等. 基于" 海绵城市”理念的下沉式绿地优化设计[J]. 南方建筑, 2014(3):39−43. doi: 10.3969/j.issn.1000-0232.2014.03.039

    Su Y J, Wang S S, Che W, et al. Optimization design of sunken greenbelt based on the concept of " Sponge City”[J]. South Architecture, 2014(3): 39−43. doi: 10.3969/j.issn.1000-0232.2014.03.039
    [9]
    Mueller G D, Thompson A M. The ability of urban residential lawns to disconnect impervious area from municipal sewer systems[J]. Jawra Journal of the American Water Resources Association, 2010, 45(5): 1116−1126.
    [10]
    Battiata J, Collins K, Hirschman D, et al. The runoff reduction method[J]. Journal of Contemporary Water Research & Education, 2010, 146(1): 11−21.
    [11]
    Lucas W C. Modeling impervious area disconnection with SWMM[C]// Low Impact Development International Conference. 2011: 897−909.
    [12]
    Portland Envirnmental Services, Oregon. Downspout disconnection[EB/OL][2018−05−21]. https://www.portlandoregon.gov/BES/article/127466, 2006.
    [13]
    Shuster W D, Pappas E, Zhang Y. Laboratory-scale simulation of runoff response from pervious-impervious systems[J]. Journal of Hydrologic Engineering, 2008, 13(9): 886−893. doi: 10.1061/(ASCE)1084-0699(2008)13:9(886)
    [14]
    潘成忠, 上官周平. 牧草对坡面侵蚀动力参数的影响[J]. 水利学报, 2005, 36(3):371−377. doi: 10.3321/j.issn:0559-9350.2005.03.020

    Pan C Z, Shangguan Z P. Influences of forage grass on hydrodynamic characteristics of slope erosion[J]. Journal of Hydraulic Engineering, 2005, 36(3): 371−377. doi: 10.3321/j.issn:0559-9350.2005.03.020
    [15]
    徐兴根. 城市园林绿地中的雨洪控制利用研究[D]. 临安: 浙江农林大学, 2012.

    Xu X G. Rain flood control in the urban green space research[D]. Lin’an: Zhejiang Agricultural University, 2012.
    [16]
    马秀梅. 北京城市不同绿地类型土壤及大气环境研究[D]. 北京: 北京林业大学, 2007.

    Ma X M. Studies on soil and atmosphere environment in different green land[D]. Beijing: Beijing Forestry University, 2007.
    [17]
    霍云梅, 毕华兴, 朱永杰, 等. QYJY-503C人工模拟降雨装置降雨特性试验[J]. 中国水土保持科学, 2015, 13(2):31−36. doi: 10.3969/j.issn.1672-3007.2015.02.005

    Huo Y M, Bi H X, Zhu Y J, et al. Rainfall characteristics test of QYJY-503C artificial simulated rainfall device[J]. Science of Soil and Water Conservation, 2015, 13(2): 31−36. doi: 10.3969/j.issn.1672-3007.2015.02.005
    [18]
    DB11/ 685—2013. 雨水控制与利用工程设计规范[S]. 北京: 北京市城乡规划标准化办公室, 2013.

    DB11/ 685—2013. Code for design of stormwater management and harvest engineering[S]. Beijing: Beijing Urban and Rural Planning Standardization Office, 2013.
    [19]
    喻啸. 绿地雨洪利用水量水质问题研究[D]. 北京: 清华大学, 2004.

    Yu X. Study on quantity and quality problem of stormwater utilization of lawn[D]. Beijing: Tsinghua University, 2004.
    [20]
    Moridnejad M. The effects of green Street implementation on runoff flow in developing urban scenarios compared to conventional system[EB/OL][2018−05−10]. https://stud.jpgilon.slu.se/5017/1/Moridnejad_M_120830.pdf, 2012.
    [21]
    张丽, 彭小金. 从产流过程分析下凹式绿地对城市雨水径流和汇流的影响[J]. 水科学与工程技术, 2007, 25(5):16−18. doi: 10.3969/j.issn.1672-9900.2007.05.008

    Zhang L, Peng X J. Effect of concave herbaceous field about urban rainwater runoff and flow concentration from the process of runoff yield[J]. Water Science and Engineering Technology, 2007, 25(5): 16−18. doi: 10.3969/j.issn.1672-9900.2007.05.008
    [22]
    丛翔宇, 倪广恒, 惠士博, 等. 基于SWMM的北京市典型城区暴雨洪水模拟分析[J]. 水利水电技术, 2006, 37(4):64−67. doi: 10.3969/j.issn.1000-0852.2006.04.014

    Cong X Y, Ni G H, Hui S B, et al. Simulative analysis on storm flood in typical urban region of Beijing based on SWMM[J]. Water Conservancy and Hydropower Technology, 2006, 37(4): 64−67. doi: 10.3969/j.issn.1000-0852.2006.04.014
    [23]
    叶水根, 刘红, 孟光辉. 设计暴雨条件下下凹式绿地的雨水蓄渗效果[J]. 中国农业大学学报, 2001, 6(6):53−58. doi: 10.3321/j.issn:1007-4333.2001.06.011

    Ye S G, Liu H, Meng G H. Analysis of rian storage and infiltration in sunken-lawn under the condition of designed storm[J]. Journal of China Agricultural University, 2001, 6(6): 53−58. doi: 10.3321/j.issn:1007-4333.2001.06.011
    [24]
    Terstriep M L, Voorhees M L, Bender G M. Conventional urbanization and its effect on storm runoff[R]. Illinois State Water Survey, 1976.
    [25]
    Pappas E A, Smith D R, Huang C, et al. Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation[J]. Catena, 2008, 72(1): 146−152. doi: 10.1016/j.catena.2007.05.001
    [26]
    孔刚, 王全九, 樊军, 等. 前期含水量对坡面降雨产流和土壤化学物质流失影响研究[J]. 土壤通报, 2008, 39(6):1395−1399. doi: 10.3321/j.issn:0564-3945.2008.06.036

    Kong G, Wang Q J, Fan J, et al. Effects of initial water content on hill slope rainfall in filtration and soil nutrient loss[J]. Chinese Journal of Soil Science, 2008, 39(6): 1395−1399. doi: 10.3321/j.issn:0564-3945.2008.06.036
    [27]
    金鑫, 郝振纯, 张金良, 等. 考虑重力侵蚀影响的分布式土壤侵蚀模型[J]. 水科学进展, 2008, 19(2):257−263. doi: 10.3321/j.issn:1001-6791.2008.02.016

    Jin X, Hao Z C, Zhang J L, et al. Distributed soil erosion model with the effect of gravitational erosion[J]. Advances in Water Science, 2008, 19(2): 257−263. doi: 10.3321/j.issn:1001-6791.2008.02.016
    [28]
    郝静. 模拟降雨条件下城市不透水面地表径流削减影响因素研究[D]. 重庆: 重庆大学, 2012.

    Hao J. Study on the influence factors of runoff reduction for urban impermeable underlying surface under simulated rainfall condition[D]. Chongqing: Chongqing University, 2012.
    [29]
    唐双成, 罗纨, 贾忠华, 等. 填料及降雨特征对雨水花园削减径流及实现海绵城市建设目标的影响[J]. 水土保持学报, 2016, 30(1):73−78.

    Tang S C, Luo W, Jia Z H, et al. Effects of filler and rainfall characteristics on runoff reduction of rain garden and achieving the goal of sponge city construction[J]. Journal of Soil and Water Conservation, 2016, 30(1): 73−78.
    [30]
    王沛永, 张媛. 城市绿地中雨水资源利用的途径与方法[J]. 中国园林, 2006, 22(2):75−81. doi: 10.3969/j.issn.1000-6664.2006.02.017

    Wang P Y, Zhang Y. Utilization of rainfall resources in urban green space[J]. Chinese Landscape Architecture, 2006, 22(2): 75−81. doi: 10.3969/j.issn.1000-6664.2006.02.017
    [31]
    范群杰. 城市绿地系统对雨水径流调蓄及相关污染削减效应研究[D]. 上海: 华东师范大学, 2006.

    Fan Q J. Study on the effect of runoff storage and pollution reduction of urban green space[D]. Shanghai: East China Normal University, 2006.
    [32]
    程江, 徐启新, 杨凯, 等. 下凹式绿地雨水渗蓄效应及其影响因素[J]. 给水排水, 2007, 33(5):45−49. doi: 10.3969/j.issn.1002-8471.2007.05.012

    Cheng J, Xu Q H, Yang K, et al. Study on effects of rain storage and infiltration of sunken lawn and it influencing factors[J]. Water & Wastewater Engineering, 2007, 33(5): 45−49. doi: 10.3969/j.issn.1002-8471.2007.05.012
    [33]
    夏军. 水文尺度问题[J]. 水利学报, 1993, 5:32−37. doi: 10.3321/j.issn:0559-9350.1993.05.004

    Xia J. The problems of scale in hydrology[J]. Journal of Hydraulic Engineering, 1993, 5: 32−37. doi: 10.3321/j.issn:0559-9350.1993.05.004
    [34]
    张科利, 秋吉康宏. 坡面细沟侵蚀发生的临界水力条件研究[J]. 土壤侵蚀与水土保持学报, 1998, 4(1):42−47.

    Zhang K L, Akiyoshi Y. Critical hydraulic condition of rill erosion on sloping surface[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(1): 42−47.
    [35]
    王全九, 沈晋, 王文焰, 等. 降雨条件下黄土坡面溶质随地表径流迁移试验研究[J]. 水土保持学报, 1993, 7(1):11−17. doi: 10.3321/j.issn:1009-2242.1993.01.002

    Wang Q J, Shen J, Wang W Y, et al. The laboratory experiment of solute in loess slope moving with surface runoff[J]. Journal of Soil and Water Conservation, 1993, 7(1): 11−17. doi: 10.3321/j.issn:1009-2242.1993.01.002
    [36]
    张宽地, 王光谦, 孙晓敏, 等. 坡面薄层水流水动力学特性试验[J]. 农业工程学报, 2014, 30(15):182−189. doi: 10.3969/j.issn.1002-6819.2014.15.024

    Zhang K D, Wang G Q, Sun X M, et al. Experiment on hydraulic characteristics of shallow open channel flow on slope[J]. Transactions of the CSAE, 2014, 30(15): 182−189. doi: 10.3969/j.issn.1002-6819.2014.15.024

Catalog

    Article views (2151) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return