Citation: | Shi Xuxia, Hou Jihua, Wang Bingxue, Wang Anzhi, Wu Jiabing, Zhang Leiming, Su Wen, Niu Shuli. Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 49-57. DOI: 10.13332/j.1000-1522.20180275 |
[1] |
Arkin P A, Smith T M, Sapiano M R P, et al. The observed sensitivity of the global hydrological cycle to changes in surface temperature[J]. Environmental Research Letters, 2010, 5(3): 533-534. doi: 10.1088/1748-9326/5/3/035201
|
[2] |
Cox P M, Betts R, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184-187. doi: 10.1038/35041539
|
[3] |
Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988. doi: 10.1126/science.1201609
|
[4] |
刘国华, 傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013
Liu G H, Fu B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013
|
[5] |
Maselli F, Papale D, Puletti N, et al. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems[J]. Remote Sensing of Environment, 2009, 113(3): 657-667. doi: 10.1016/j.rse.2008.11.008
|
[6] |
Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329: 834-838. doi: 10.1126/science.1184984
|
[7] |
Piao S L, Wang X H, Ciais P, et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 2011, 17(10): 3228-3239. doi: 10.1111/gcb.2011.17.issue-10
|
[8] |
Musavi T, Migliavacca M, Reichstein M, et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity[J]. Nature Ecology & Evolution, 2017, 1(2): 48. https://www.nature.com/articles/s41559-016-0048
|
[9] |
常顺利, 杨洪晓, 葛剑平. 净生态系统生产力研究进展与问题[J]. 北京师范大学学报(自然科学版), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021
Chang S L, Yang H X, Ge J P. Chang, S. Advance and questions in net ecosystem production[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021
|
[10] |
Ryan M G. Effects of climate change on plant respiration[J]. Ecological Applications, 1991, 1(2): 157-167. doi: 10.2307/1941808
|
[11] |
Weston D J, Bauerle W L. Inhibition and acclimation of C (3) photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer rubrum (red maple)[J]. Tree Physiology. 2007, 27(8): 1083-1092. doi: 10.1093/treephys/27.8.1083
|
[12] |
Feller U, Craftsbrandner S J, Salvucci M E. Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco[J]. Plant Physiology, 1998, 116(2): 539-546. doi: 10.1104/pp.116.2.539
|
[13] |
Salvucci M E, Craftsbrandner S J. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments[J]. Plant Physiology, 2004, 134(4): 1460-1470. doi: 10.1104/pp.103.038323
|
[14] |
Scafaro A P, Xiang S, Long B M, et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered rubisco content[J]. Global Change Biology, 2016, 23(7): 2783-2800. doi: 10.1111/gcb.13566
|
[15] |
Niu S L, Luo Y Q, Fei S F, et al. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes[J]. Global Change Biology, 2011, 17(10): 3102-3114. doi: 10.1111/gcb.2011.17.issue-10
|
[16] |
Hüve K, Bichele I, Rasulov B, et al. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation[J]. Plant Cell & Environment, 2011, 34(1): 113-126.
|
[17] |
O'Sullivan O S, Weerasinghe K W, Evans J R, et al. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function[J]. Plant Cell & Environment, 2013, 36(7): 1268-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ef4b8021fc1e94322e463098c57ba79
|
[18] |
Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101-117. doi: 10.1007/s11120-013-9874-6
|
[19] |
Niu S L, Li Z X, Xia J Y, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental & Experimental Botany, 2008, 63(1): 91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dbae3afdb0ddda7fa99903b0e45bbe2
|
[20] |
Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species[J]. Plant Cell & Environment, 2010, 30(9): 1176-1190. https://www.ncbi.nlm.nih.gov/pubmed/17661754/
|
[21] |
Gunderson C A, O'Hara K H, Campion C M, et al. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate[J]. Global Change Biology, 2010, 16(8): 2272-2286.
|
[22] |
Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis[J]. Plant Cell & Environment, 2007, 30(9): 1086-1106. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1056702
|
[23] |
Falge E, Tenhunen J, Baldocchi D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements[J]. Agricultural & Forest Meteorology, 2002, 113(1): 75-95. https://www.sciencedirect.com/science/article/pii/S016819230200103X
|
[24] |
Yuan W P, Luo Y Q, Liang S, et al. Thermal adaptation of net ecosystem exchange[J]. Biogeosciences Discussions, 2011, 8(6): 1109-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000642153
|
[25] |
Niu S L, Luo Y Q, Fei S F, et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms[J]. New Phytologist, 2012, 194(3): 775-783. doi: 10.1111/j.1469-8137.2012.04095.x
|
[26] |
王叶, 延晓冬.全球气候变化对中国森林生态系统的影响[J].大气科学, 2006, 30(5): 1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27
Wang Y, Yan X D. The response of the forest ecosystem in China to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27
|
[27] |
程肖侠, 延晓冬.气候变化对中国东北主要森林类型的影响[J].生态学报, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011
Cheng X X, Yan X D. Effects of climate change on typical forest in the northeast of China[J]. Acta Ecologica Sinica, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011
|
[28] |
Guan D X, Wu J B, Zhao X S, et al. Annual CO2 flux over old temperate mixed forest in north-eastern China[J]. Agricultural & Forest Meteorology, 2006, 137(3): 138-149. https://www.sciencedirect.com/science/article/pii/S0168192306000578
|
[29] |
Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China[J]. Global Change Biology, 2010, 14(11): 2555-2571. doi: 10.1111/j.1365-2486.2008.01663.x
|
[30] |
Zhang J H, Yu G R, Han S J, et al. Seasonal and annual variation of CO2, flux above a broad-leaved Korean pine mixed forest[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):63-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e045e68ad78e0943f0bda4da37a346eb
|
[31] |
Baldocchi D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2015, 20(12): 3600-3609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5912c407e2bb3470bacdb644a99b67c
|
[32] |
Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583. doi: 10.5194/bg-3-571-2006
|
[33] |
Chu H S, Baldocchi D D, John R, et al. Fluxes all of the time: a primer on the temporal representativeness of FLUXNET[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(2): 289-307. doi: 10.1002/jgrg.v122.2
|
[34] |
于贵瑞, 张雷明, 孙晓敏.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005
Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005
|
[35] |
郝占庆, 于德永, 杨晓明, 等.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报, 2002, 13(7): 785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005
Hao Z Q, Yu D Y, Yang X M, et al. α diversity of communities and their variety along altitude gradient on northern slope of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2002, 13(7):785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005
|
[36] |
张雷明, 曹沛雨, 朱亚平, 等.长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子[J].植物生态学报, 2015, 39(12):1156-1165. doi: 10.17521/cjpe.2015.0112
Zhang L M, Cao P Y, Zhu Y P, et al. Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest, Changbai Mountain[J]. Chinese Journal of Plant Ecology, 2015, 39(12): 1156-1165. doi: 10.17521/cjpe.2015.0112
|
[37] |
朱先进, 于贵瑞, 王秋凤, 等.仪器的加热效应校正对生态系统碳水通量估算的影响[J].生态学杂志, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037
Zhu X J, Yu G R, Wang Q F, et al. Instrument heating correction effect on estimation of ecosystem carbon and water fluxes[J]. Chinese Journal of Ecology, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037
|
[38] |
Kirschbaum M U F. Modelling forest growth and carbon storage in response to increasing CO2 and temperature[J]. Tellus, 2010, 51(5): 871-888. doi: 10.1034/j.1600-0889.1999.t01-4-00002.x
|
[39] |
Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 2003, 8(7): 343-351. doi: 10.1016/S1360-1385(03)00136-5
|
[40] |
Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219-231. doi: 10.1093/treephys/tpr141
|
[41] |
Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404: 861. doi: 10.1038/35009084
|
[42] |
Jarvi M P, Burton A J. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil[J]. Plant Cell & Environment, 2018, 41(3): 504-516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a66874337ad8952d7432177a9651b6e4
|
[43] |
Wang X C, Wang C K, Yu G R. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements[J]. Science in China Series D: Earch Sciences, 2008, 51(8):1129-1143. doi: 10.1007/s11430-008-0087-3
|
[44] |
Smith N G, Dukes J S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types[J]. Global Change Biology, 2017, 23(11): 4840-4853. doi: 10.1111/gcb.2017.23.issue-11
|
[45] |
Booth B B B, Jones C D, Collins M, et al. High sensitivity of future global warming to land carbon cycle processes[J]. Environmental Research Letters, 2012, 7(2): 24002. doi: 10.1088/1748-9326/7/2/024002
|
[46] |
Churkina G, Schimel D, Braswell B H, et al. Spatial analysis of growing season length control over net ecosystem exchange[J]. Global Change Biology, 2010, 11(10): 1777-1787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2deb78baeb285c3a6f31bc36ebcf52c
|
[47] |
Baldocchi D, Falge E, Gu L, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(82): 2415-2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
|
[48] |
Smith N G, Malyshev S L, Shevliakova E, et al. Foliar temperature acclimation reduces simulated carbon sensitivity to climate[J]. Nature Climate Change, 2016, 6(2): 219-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6822eb95fd49bc01c7da8b14bc77943
|
[49] |
Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: decadal changes in solar radiation at earth's surface[J]. Science, 2005, 308: 847-850. doi: 10.1126/science.1103215
|
[50] |
Rambal S, Ourcival J M, Joffre R, et al. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy[J]. Global Change Biology, 2010, 9(12): 1813-1824. doi: 10.1111/j.1365-2486.2003.00687.x
|
[51] |
Ma S, Osuna J L, Verfaillie J, et al. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna[J]. Photosynthesis Research, 2017, 132(11): 1-15. doi: 10.1007%2Fs11120-017-0388-5
|
[52] |
Zhang L M, Yu G R, Sun X M, et al. Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):47-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81396a44ad07b6a0582a64e3eba0082f
|
[53] |
吴玉莲, 王襄平, 李巧燕, 等.长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析[J].北京大学学报(自然科学版), 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021
Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on BIOME-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021
|
[1] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[2] | Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148 |
[3] | Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250 |
[4] | Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289 |
[5] | LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465 |
[6] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[7] | GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324 |
[8] | ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020 |
[9] | LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27. |
[10] | WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95. |
1. |
赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
![]() | |
2. |
任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
![]() | |
3. |
杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
![]() | |
4. |
赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 .
![]() | |
5. |
李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 .
![]() | |
6. |
刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
![]() | |
7. |
刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
![]() | |
8. |
周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
![]() | |
9. |
吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
![]() | |
10. |
张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
![]() | |
11. |
陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .
![]() |