Citation: | Shi Xuxia, Hou Jihua, Wang Bingxue, Wang Anzhi, Wu Jiabing, Zhang Leiming, Su Wen, Niu Shuli. Relationship between primary productivity and temperature in broadleaved Pinus koraiensis mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 49-57. DOI: 10.13332/j.1000-1522.20180275 |
[1] |
Arkin P A, Smith T M, Sapiano M R P, et al. The observed sensitivity of the global hydrological cycle to changes in surface temperature[J]. Environmental Research Letters, 2010, 5(3): 533-534. doi: 10.1088/1748-9326/5/3/035201
|
[2] |
Cox P M, Betts R, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184-187. doi: 10.1038/35041539
|
[3] |
Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988. doi: 10.1126/science.1201609
|
[4] |
刘国华, 傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013
Liu G H, Fu B J. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001, 1(1):71-78. doi: 10.3321/j.issn:1000-3037.2001.01.013
|
[5] |
Maselli F, Papale D, Puletti N, et al. Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems[J]. Remote Sensing of Environment, 2009, 113(3): 657-667. doi: 10.1016/j.rse.2008.11.008
|
[6] |
Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329: 834-838. doi: 10.1126/science.1184984
|
[7] |
Piao S L, Wang X H, Ciais P, et al. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006[J]. Global Change Biology, 2011, 17(10): 3228-3239. doi: 10.1111/gcb.2011.17.issue-10
|
[8] |
Musavi T, Migliavacca M, Reichstein M, et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity[J]. Nature Ecology & Evolution, 2017, 1(2): 48. https://www.nature.com/articles/s41559-016-0048
|
[9] |
常顺利, 杨洪晓, 葛剑平. 净生态系统生产力研究进展与问题[J]. 北京师范大学学报(自然科学版), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021
Chang S L, Yang H X, Ge J P. Chang, S. Advance and questions in net ecosystem production[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(5): 517-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjsfdxxb200505021
|
[10] |
Ryan M G. Effects of climate change on plant respiration[J]. Ecological Applications, 1991, 1(2): 157-167. doi: 10.2307/1941808
|
[11] |
Weston D J, Bauerle W L. Inhibition and acclimation of C (3) photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer rubrum (red maple)[J]. Tree Physiology. 2007, 27(8): 1083-1092. doi: 10.1093/treephys/27.8.1083
|
[12] |
Feller U, Craftsbrandner S J, Salvucci M E. Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco[J]. Plant Physiology, 1998, 116(2): 539-546. doi: 10.1104/pp.116.2.539
|
[13] |
Salvucci M E, Craftsbrandner S J. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments[J]. Plant Physiology, 2004, 134(4): 1460-1470. doi: 10.1104/pp.103.038323
|
[14] |
Scafaro A P, Xiang S, Long B M, et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered rubisco content[J]. Global Change Biology, 2016, 23(7): 2783-2800. doi: 10.1111/gcb.13566
|
[15] |
Niu S L, Luo Y Q, Fei S F, et al. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes[J]. Global Change Biology, 2011, 17(10): 3102-3114. doi: 10.1111/gcb.2011.17.issue-10
|
[16] |
Hüve K, Bichele I, Rasulov B, et al. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation[J]. Plant Cell & Environment, 2011, 34(1): 113-126.
|
[17] |
O'Sullivan O S, Weerasinghe K W, Evans J R, et al. High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function[J]. Plant Cell & Environment, 2013, 36(7): 1268-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ef4b8021fc1e94322e463098c57ba79
|
[18] |
Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101-117. doi: 10.1007/s11120-013-9874-6
|
[19] |
Niu S L, Li Z X, Xia J Y, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental & Experimental Botany, 2008, 63(1): 91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dbae3afdb0ddda7fa99903b0e45bbe2
|
[20] |
Kattge J, Knorr W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species[J]. Plant Cell & Environment, 2010, 30(9): 1176-1190. https://www.ncbi.nlm.nih.gov/pubmed/17661754/
|
[21] |
Gunderson C A, O'Hara K H, Campion C M, et al. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate[J]. Global Change Biology, 2010, 16(8): 2272-2286.
|
[22] |
Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis[J]. Plant Cell & Environment, 2007, 30(9): 1086-1106. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1056702
|
[23] |
Falge E, Tenhunen J, Baldocchi D, et al. Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements[J]. Agricultural & Forest Meteorology, 2002, 113(1): 75-95. https://www.sciencedirect.com/science/article/pii/S016819230200103X
|
[24] |
Yuan W P, Luo Y Q, Liang S, et al. Thermal adaptation of net ecosystem exchange[J]. Biogeosciences Discussions, 2011, 8(6): 1109-1136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000642153
|
[25] |
Niu S L, Luo Y Q, Fei S F, et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms[J]. New Phytologist, 2012, 194(3): 775-783. doi: 10.1111/j.1469-8137.2012.04095.x
|
[26] |
王叶, 延晓冬.全球气候变化对中国森林生态系统的影响[J].大气科学, 2006, 30(5): 1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27
Wang Y, Yan X D. The response of the forest ecosystem in China to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018. doi: 10.3878/j.issn.1006-9895.2006.05.27
|
[27] |
程肖侠, 延晓冬.气候变化对中国东北主要森林类型的影响[J].生态学报, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011
Cheng X X, Yan X D. Effects of climate change on typical forest in the northeast of China[J]. Acta Ecologica Sinica, 2008, 28(2): 534-543. doi: 10.3321/j.issn:1000-0933.2008.02.011
|
[28] |
Guan D X, Wu J B, Zhao X S, et al. Annual CO2 flux over old temperate mixed forest in north-eastern China[J]. Agricultural & Forest Meteorology, 2006, 137(3): 138-149. https://www.sciencedirect.com/science/article/pii/S0168192306000578
|
[29] |
Yu G R, Zhang L M, Sun X M, et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China[J]. Global Change Biology, 2010, 14(11): 2555-2571. doi: 10.1111/j.1365-2486.2008.01663.x
|
[30] |
Zhang J H, Yu G R, Han S J, et al. Seasonal and annual variation of CO2, flux above a broad-leaved Korean pine mixed forest[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):63-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e045e68ad78e0943f0bda4da37a346eb
|
[31] |
Baldocchi D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method[J]. Global Change Biology, 2015, 20(12): 3600-3609. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5912c407e2bb3470bacdb644a99b67c
|
[32] |
Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583. doi: 10.5194/bg-3-571-2006
|
[33] |
Chu H S, Baldocchi D D, John R, et al. Fluxes all of the time: a primer on the temporal representativeness of FLUXNET[J]. Journal of Geophysical Research Biogeosciences, 2017, 122(2): 289-307. doi: 10.1002/jgrg.v122.2
|
[34] |
于贵瑞, 张雷明, 孙晓敏.中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J].地理科学进展, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005
Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 2014, 33(7): 903-917. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407005
|
[35] |
郝占庆, 于德永, 杨晓明, 等.长白山北坡植物群落α多样性及其随海拔梯度的变化[J].应用生态学报, 2002, 13(7): 785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005
Hao Z Q, Yu D Y, Yang X M, et al. α diversity of communities and their variety along altitude gradient on northern slope of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2002, 13(7):785-789. doi: 10.3321/j.issn:1001-9332.2002.07.005
|
[36] |
张雷明, 曹沛雨, 朱亚平, 等.长白山阔叶红松林生态系统光能利用率的动态变化及其主控因子[J].植物生态学报, 2015, 39(12):1156-1165. doi: 10.17521/cjpe.2015.0112
Zhang L M, Cao P Y, Zhu Y P, et al. Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest, Changbai Mountain[J]. Chinese Journal of Plant Ecology, 2015, 39(12): 1156-1165. doi: 10.17521/cjpe.2015.0112
|
[37] |
朱先进, 于贵瑞, 王秋凤, 等.仪器的加热效应校正对生态系统碳水通量估算的影响[J].生态学杂志, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037
Zhu X J, Yu G R, Wang Q F, et al. Instrument heating correction effect on estimation of ecosystem carbon and water fluxes[J]. Chinese Journal of Ecology, 2012, 31(2):487-493. http://d.old.wanfangdata.com.cn/Periodical/stxzz201202037
|
[38] |
Kirschbaum M U F. Modelling forest growth and carbon storage in response to increasing CO2 and temperature[J]. Tellus, 2010, 51(5): 871-888. doi: 10.1034/j.1600-0889.1999.t01-4-00002.x
|
[39] |
Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature[J]. Trends in Plant Science, 2003, 8(7): 343-351. doi: 10.1016/S1360-1385(03)00136-5
|
[40] |
Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219-231. doi: 10.1093/treephys/tpr141
|
[41] |
Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404: 861. doi: 10.1038/35009084
|
[42] |
Jarvi M P, Burton A J. Adenylate control contributes to thermal acclimation of sugar maple fine-root respiration in experimentally warmed soil[J]. Plant Cell & Environment, 2018, 41(3): 504-516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a66874337ad8952d7432177a9651b6e4
|
[43] |
Wang X C, Wang C K, Yu G R. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements[J]. Science in China Series D: Earch Sciences, 2008, 51(8):1129-1143. doi: 10.1007/s11430-008-0087-3
|
[44] |
Smith N G, Dukes J S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types[J]. Global Change Biology, 2017, 23(11): 4840-4853. doi: 10.1111/gcb.2017.23.issue-11
|
[45] |
Booth B B B, Jones C D, Collins M, et al. High sensitivity of future global warming to land carbon cycle processes[J]. Environmental Research Letters, 2012, 7(2): 24002. doi: 10.1088/1748-9326/7/2/024002
|
[46] |
Churkina G, Schimel D, Braswell B H, et al. Spatial analysis of growing season length control over net ecosystem exchange[J]. Global Change Biology, 2010, 11(10): 1777-1787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2deb78baeb285c3a6f31bc36ebcf52c
|
[47] |
Baldocchi D, Falge E, Gu L, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82(82): 2415-2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
|
[48] |
Smith N G, Malyshev S L, Shevliakova E, et al. Foliar temperature acclimation reduces simulated carbon sensitivity to climate[J]. Nature Climate Change, 2016, 6(2): 219-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6822eb95fd49bc01c7da8b14bc77943
|
[49] |
Wild M, Gilgen H, Roesch A, et al. From dimming to brightening: decadal changes in solar radiation at earth's surface[J]. Science, 2005, 308: 847-850. doi: 10.1126/science.1103215
|
[50] |
Rambal S, Ourcival J M, Joffre R, et al. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy[J]. Global Change Biology, 2010, 9(12): 1813-1824. doi: 10.1111/j.1365-2486.2003.00687.x
|
[51] |
Ma S, Osuna J L, Verfaillie J, et al. Photosynthetic responses to temperature across leaf-canopy-ecosystem scales: a 15-year study in a Californian oak-grass savanna[J]. Photosynthesis Research, 2017, 132(11): 1-15. doi: 10.1007%2Fs11120-017-0388-5
|
[52] |
Zhang L M, Yu G R, Sun X M, et al. Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China[J]. Science in China Series D: Earth Sciences, 2006, 49(Suppl.2):47-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81396a44ad07b6a0582a64e3eba0082f
|
[53] |
吴玉莲, 王襄平, 李巧燕, 等.长白山阔叶红松林净初级生产力对气候变化的响应:基于BIOME-BGC模型的分析[J].北京大学学报(自然科学版), 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021
Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on BIOME-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):577-586. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201403021
|
1. |
黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 .
![]() | |
2. |
张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
![]() | |
3. |
吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
![]() | |
4. |
储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
![]() | |
5. |
宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
![]() | |
6. |
谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
![]() | |
7. |
常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
![]() | |
8. |
张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 .
![]() | |
9. |
王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 .
![]() | |
10. |
王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
![]() | |
11. |
贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
![]() | |
12. |
赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
![]() | |
13. |
赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
![]() | |
14. |
郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
![]() | |
15. |
徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
![]() | |
16. |
孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 .
![]() | |
17. |
孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
![]() | |
18. |
陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .
![]() |