Citation: | Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. DOI: 10.13332/j.1000-1522.20180287 |
[1] |
胡婵娟, 郭雷. 植被恢复的生态效应研究进展[J]. 生态环境学报, 2012, 21(9):1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023
Hu C J, Guo L. Advances in the research of ecological effects of vegetation restoration[J]. Ecology and Environmental Sciences, 2012, 21(9): 1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023
|
[2] |
胡建忠, 朱金兆. 黄土高原退化生态系统的恢复重建方略[J]. 北京林业大学学报(社会科学版), 2005, 4(1):13−19. doi: 10.3969/j.issn.1671-6116.2005.01.003
Hu J Z, Zhu J Z. Tactics of vegetation restoration and reconst-ruction for degraded ecosystem in the Loess Plateau[J]. Journal of Beijing Forestry University (Social Sciences), 2005, 4(1): 13−19. doi: 10.3969/j.issn.1671-6116.2005.01.003
|
[3] |
汪滨, 张志强. 黄土高原典型流域退耕还林土地利用变化及其合理性评价[J]. 农业工程学报, 2017, 33(7):235−245.
Wang B, Zhang Z Q. Land use change driven by sloping land conversion program in typical watershed on Loess Plateau and its rationality evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 235−245.
|
[4] |
赵阳, 余新晓. 黄土丘陵沟壑区典型流域气候和土地利用变化对径流泥沙产量的影响[J]. 北京林业大学学报, 2013, 35(3):39−45.
Zhao Y, Yu X X. Effects of climate variation and land use change on runoff-sediment yield in typical watershed of loess hilly-gully region[J]. Journal of Beijing Forestry University, 2013, 35(3): 39−45.
|
[5] |
张学霞, 陈丽华. 黄土高原地区流域景观格局对水土流失的影响分析[J]. 北京林业大学学报, 2008, 30(增刊2):95−102.
Zhang X X, Chen L H. Effects of watershed landscape pattern on soil and water loss in the Loess Plateau Region[J]. Journal of Beijing Forestry University, 2008, 30(Suppl.2): 95−102.
|
[6] |
李梁, 张建军, 陈宝强, 等. 晋西黄土区封禁小流域植被群落特征变化[J]. 北京林业大学学报, 2017, 39(10):78−89.
Li L; Zhang J J, Chen B Q, et al. Changes of vegetation commu-nity characteristics in closed small watershed of the Loess Plateau in western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 78−89.
|
[7] |
胡婵娟, 傅伯杰, 刘国华, 等. 黄土丘陵沟壑区典型人工林下土壤微生物功能多样性[J]. 生态学报, 2009, 29(2):727−733. doi: 10.3321/j.issn:1000-0933.2009.02.022
Hu C J, Fu B J, Liu G H, et al. Soil microbial functional and diversity under typical artificial woodlands in the hilly area of the Loess Plateau[J]. Acta Ecologica Sinica, 2009, 29(2): 727−733. doi: 10.3321/j.issn:1000-0933.2009.02.022
|
[8] |
Xiao L, Liu G B, Zhang J Y, et al. Long-term effects of vegeta-tional restoration on soil microbial communities on the Loess Plateau of China[J]. Restoration Ecology, 2016, 24(6): 794−804. doi: 10.1111/rec.2016.24.issue-6
|
[9] |
罗达, 史作民, 唐敬超, 等. 南亚热带乡土树种人工纯林及混交林土壤微生物群落结构[J]. 应用生态学报, 2014, 25(9):2543−2550.
Luo D, Shi Z M, Tang J C, et al. Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2543−2550.
|
[10] |
范周周, 卢舒瑜, 王娇, 等. 岩溶与非岩溶区不同林分根际土壤微生物及酶活性[J]. 北京林业大学学报, 2018, 40(7):55−61.
Fan Z Z, Lu S Y, Wang J, et al. Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas[J]. Journal of Beijing Forestry University, 2018, 40(7): 55−61.
|
[11] |
Chang E H, Tian G L, Chiu C Y. Soil microbial communities in natural and managed cloud montane forests[J]. Forests, 2017, 8(2): 33. doi: 10.3390/f8010033
|
[12] |
安文明, 韩晓阳, 李宗善, 等. 黄土高原不同植被恢复方式对土壤水分坡面变化的影响[J]. 生态学报, 2018, 38(13):4852−4860.
An W M, Han X Y, Li Z S, et al. Effects of different vegetation restoration types on the slope difference of soil water content in the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(13): 4852−4860.
|
[13] |
刘玉林, 朱广宇, 邓蕾, 等. 黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响[J]. 应用生态学报, 2018, 29(7):2163−2172.
Liu Y L, Zhu G Y, Deng L, et al. Effects of natural vegetation restoration and afforestation on soil carbon and nitrogen storage in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2163−2172.
|
[14] |
张海涵, 唐明, 陈辉, 等. 黄土高原5种造林树种菌根根际土壤微生物群落多样性研究[J]. 北京林业大学学报, 2008, 30(3):85−90. doi: 10.3321/j.issn:1000-1522.2008.03.015
Zhang H H, Tang M, Chen H, et al. Diversity of soil microbial communities in the mycorrhizosphere of five afforestation tree species in the Loess Plateau[J]. Journal of Beijing Forestry University, 2008, 30(3): 85−90. doi: 10.3321/j.issn:1000-1522.2008.03.015
|
[15] |
王雅, 刘爽, 郭晋丽, 等. 黄土高原不同植被类型对土壤养分、酶活性及微生物的影响[J]. 水土保持通报, 2018, 38(1):62−68.
Wang Y, Liu S, Guo J L, et al. Influence of different vegetation types on soil nutrients, enzyme activities and microbial diversities in Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 62−68.
|
[16] |
李静, 蔚晓燕, 唐明. 黄土高原纸坊沟流域不同植物对土壤微生物生物量和土壤酶活性的影响[J]. 西北植物学报, 2013, 33(2):387−393. doi: 10.3969/j.issn.1000-4025.2013.02.027
Li J, Yu X Y, Tang M. Effects of Different plants on soil microbial biomass and enzyme activities in Zhifanggou Watershed of Loess Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(2): 387−393. doi: 10.3969/j.issn.1000-4025.2013.02.027
|
[17] |
李彦林, 陈吉祥, 张彦, 等. 半干旱黄土高原生态区不同土地利用类型土壤可培养微生物群落分析[J]. 干旱区资源与环境, 2017, 31(9):150−155.
LI Y L, Chen J X, Zhang Y, et al. Analysis of culturable microbial communities in different land utilization types in semi-arid loess plateau ecological zones[J]. Journal of Arid Land Resources and Environment, 2017, 31(9): 150−155.
|
[18] |
翟辉, 张海, 张超, 等. 黄土峁状丘陵区不同类型林分土壤微生物功能多样性[J]. 林业科学, 2016, 52(12):84−91. doi: 10.11707/j.1001-7488.20161210
Zhai H, Zhang H, Zhang C, et al. Soil microbial functional diversity in different types of stands in the hilly-gully regions of Loess Plateau[J]. Scientia Silvae Sinicae, 2016, 52(12): 84−91. doi: 10.11707/j.1001-7488.20161210
|
[19] |
刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法: 从培养到非培养[J]. 生态学报, 2012, 32(14):4421−4433.
Liu G H, Ye Z F, Wu W Z. Culture-dependent and culture-independent approaches to studying soil microbial diversity[J]. Acta Ecologica Sinica, 2012, 32(14): 4421−4433.
|
[20] |
白震, 何红波, 张威, 等. 磷脂脂肪酸技术及其在土壤微生物研究中的应用[J]. 生态学报, 2006, 26(7):2387−2394. doi: 10.3321/j.issn:1000-0933.2006.07.043
Bai Z, He H B, Zhang W, et al. PLFAs technique and it's application in the study of soil microbiology[J]. Acta Ecologica Sinica, 2006, 26(7): 2387−2394. doi: 10.3321/j.issn:1000-0933.2006.07.043
|
[21] |
Bloem J, Hopkins D W, Benedetti A. Microbiological methods for assessing soil quality[M]. Wallingford: CABI Publishing, 2005: 205.
|
[22] |
Dong W Y, Zhang X Y, Dai X Q, et al. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China[J]. Applied Soil Ecology, 2014, 84(3): 140−147.
|
[23] |
Willers C, Jansen Van Rensburg P J, Claassens S. Microbial signature lipid biomarker analysis, an approach that is still preferred, even amid various method modifications[J]. Journal of Applied Microbiology, 2015, 118(6): 1251−1263. doi: 10.1111/jam.2015.118.issue-6
|
[24] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146−196.
Lu R K. Soil agricultural chemical analysis method[M].Beijing: China Agricultural Science and Technology Press, 2000: 146−196.
|
[25] |
Bossio D. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utili-zation patterns[J]. Microbial Ecology, 1998, 35(3-4): 265−278.
|
[26] |
李欣玫, 左易灵, 薛子可, 等. 不同荒漠植物根际土壤微生物群落结构特征[J]. 生态学报, 2018, 38(8):2855−2863.
Li X M, Zuo Y L, Xue Z K, et al. Characteristics of microbial community structure in rhizosphere soil of different desert plants[J]. Acta Ecologica Sinica, 2018, 38(8): 2855−2863.
|
[27] |
李南洁, 曾清苹, 何丙辉, 等. 缙云山柑橘林土壤微生物磷脂脂肪酸(PLFAs)及酶活性的季节变化特征[J]. 环境科学, 2017, 38(1):309−317.
Li N J, Zeng Q P, He B H, et al. Seasonal variations of soil microbial PLFAs and soil enzyme activity under the citrus plantation in Mt[J]. Environmental Science, 2017, 38(1): 309−317.
|
[28] |
吴则焰, 林文雄, 陈志芳, 等. 武夷山不同海拔植被带土壤微生物PLFA分析[J]. 林业科学, 2014, 50(7):105−112.
Wu Z Y, Lin W X, Chen Z F, et al. Phospholipid fatty acid analy-sis of soil microbes at different elevation of Wuyi Mountains[J]. Scientia Silvae Sinicae, 2014, 50(7): 105−112.
|
[29] |
杨淑娇, 杨永平, 石玲玲, 等. 基于PLFA的高山栎和高山松林松茸菌塘土壤微生物群落特征研究[J]. 生态学报, 2018, 38(5):1630−1638.
Yang S J, Yang Y P, Shi L L, et al. Comparison of soil microbial community composition and structure in Tricholoma matsutake shiro and non-shiro soils in Quercus semecarpifolia and Pinus densata forests[J]. Acta Ecologica Sinica, 2018, 38(5): 1630−1638.
|
[30] |
刘海燕, 魏天兴, 王仙. 黄土丘陵区人工林土壤微生物PLFA标记多样性分析[J]. 北京林业大学学报, 2016, 38(1):28−35.
Liu H Y, Wei T X, Wang X. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28−35.
|
[31] |
Pollierer M M, Ferlian O, Scheu S. Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions[J]. Soil Biology Biochemistry, 2015, 91: 248−257. doi: 10.1016/j.soilbio.2015.08.035
|
[32] |
Fisk M C, Ruether K F, Yavitt J B. Microbial activity and functional composition among northern peatland ecosystems[J]. Soil Biology Biochemistry, 2003, 35(4): 591−602. doi: 10.1016/S0038-0717(03)00053-1
|
[33] |
Zhang Q, Wu J, Yang F, et al. Alterations in soil microbial community composition and biomass following agricultural land use change[J]. Scientific Reports, 2016, 6: 36587. doi: 10.1038/srep36587
|
[34] |
Kang H, Gao H, Yu W, et al. Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island[J]. Science of the Total Environment, 2018, 625: 1423−1432. doi: 10.1016/j.scitotenv.2017.12.180
|
[35] |
孔滨, 孙波, 郑宪清, 等. 水热条件和施肥对黑土中微生物群落代谢特征的影响[J]. 土壤学报, 2009, 46(1):100−106. doi: 10.3321/j.issn:0564-3929.2009.01.014
Kong B, Sun B, Zheng X Q, et al. Effect of hydrothermal conditions and fertilization on metabolic characteristics of microbial community in a black soil[J]. Acta Pedologica Sinica, 2009, 46(1): 100−106. doi: 10.3321/j.issn:0564-3929.2009.01.014
|
[36] |
郑灏, 杨志坚, 冯金玲, 等. 不同林下套种模式对油茶幼林根区土壤化学特性及微生物的影响[J]. 福建农林大学学报(自然版), 2015, 44(2):147−153.
Zheng H, Yang Z J, Feng J L, et al. Effects of interplanting patterns on chemical properties and microbial community in root zone soils of young Camellia oleifera forest[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(2): 147−153.
|
[37] |
樊芳玲, 谢德体, 魏朝富, 等. 坡耕地−桑树系统土壤微生物群落结构的PLFA分析[J]. 生态学报, 2016, 36(12):3812−3823.
Fan F L, Xie D T, Wei C F, et al. PLFA analysis showed that the configuration modes of sloping crop-mulberry systems affect the soilmicrobial community structure[J]. Acta Ecologica Sinica, 2016, 36(12): 3812−3823.
|
[38] |
Richter A, Schöning I, Kahl T, et al. Regional environmental conditions shape microbial community structure stronger than local forest management intensity[J]. Forest Ecology and Management, 2018, 409: 250−259. doi: 10.1016/j.foreco.2017.11.027
|
[39] |
Vitousek P. Ecosystem science and human-environment inter-actions in the Hawaiian Archipelago[J]. Journal of Ecology, 2006, 94(3): 510−521. doi: 10.1111/j.1365-2745.2006.01119.x
|
[40] |
Kong A Y Y, Scow K M, Córdova-Kreylos A L, et al. Microbial community composition and carbon cycling within soil microen-vironments of conventional, low-input, and organic cropping systems[J]. Soil Biology Biochemistry, 2011, 43(1): 20. doi: 10.1016/j.soilbio.2010.09.005
|
[41] |
Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biology & Biochemistry, 2015, 84: 53−64.
|
[42] |
Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands[J]. Soil Biology & Biochemistry, 1999, 31(7): 1021−1030.
|
[43] |
Lv F L, Xue S, Wang G L, et al. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China[J/OL]. PLoS One, 2017, 12(2): e0172382[2018−07−18]. https://doi.org/10.1371/journal.pone.0172382.
|
[44] |
郭芸, 孙本华, 王颖, 等. 长期施用不同肥料塿土PLFA指纹特征[J]. 中国农业科学, 2017, 50(1):94−103.
Guo Y, Sun B H, Wang Y, et al. PLFA fingerprint characteristics of an anthropogenic loess soil under long-term different ferti-lizations[J]. Scientia Agricultura Sinica, 2017, 50(1): 94−103.
|
[1] | Fan Rongyuan, Ye Shaoming, Wu Hao, Li Zihua, Li Linxin, Yu Chunhe. Characteristics of changes in soil bacterial community structure and functional diversity in Eucalyptus sp. plantation of different ages[J]. Journal of Beijing Forestry University, 2024, 46(12): 41-52. DOI: 10.12171/j.1000-1522.20240199 |
[2] | Jiang Yibing, Song Xiaoshuang, Wang Zhanbin, Wang Liang, Deng Xun, Yu Wenjing. Diversity and community structure of endophytic fungi in Pinus sibirica needles with different lesion grades[J]. Journal of Beijing Forestry University, 2024, 46(11): 24-33. DOI: 10.12171/j.1000-1522.20230299 |
[3] | Fan Zhihui, Li Suyan, Sun Xiangyang, Qu Bingpeng, Zheng Yi, Zhou Wei, Du Tiantian. Effects of mulching on fungal diversity and community structure in urban exposed soil[J]. Journal of Beijing Forestry University, 2022, 44(8): 98-106. DOI: 10.12171/j.1000-1522.20210129 |
[4] | Chen Cun, Ding Changjun, Huang Qinjun, Zhang Jing, Liu Ning, Li Bo, Li Zhenghong, Su Xiaohua. Phenotypic and physiological trait diversity and population structure of Populus deltoides[J]. Journal of Beijing Forestry University, 2021, 43(6): 1-12. DOI: 10.12171/j.1000-1522.20200231 |
[5] | Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202 |
[6] | Tuya, Liu Yanshu, Zhu Yuanjun, Yang Xiaohui, Zhang Kebin. Effects of shrub encroachment in Xilin Gol Steppe on the species diversity and biomass of herbaceous communities in shrub interspaces area[J]. Journal of Beijing Forestry University, 2019, 41(10): 57-67. DOI: 10.13332/j.1000-1522.20180411 |
[7] | ZHANG Jun-e, FAN Xin-lei, LIANG Ying-mei, TIAN Cheng-ming. Analysis of appearance features and genetic diversity of Cytospora chrysosperma causing poplar canker[J]. Journal of Beijing Forestry University, 2017, 39(7): 76-86. DOI: 10.13332/j.1000-1522.20160257 |
[8] | HE Zhen, ZHAO Qin, LI Di-qiang, LI Mi, GU Zhi-rong. Structure and diversity of soil collembolan and aboveground arthropod communities under different habitats[J]. Journal of Beijing Forestry University, 2017, 39(5): 98-108. DOI: 10.13332/j.1000-1522.20170045 |
[9] | FAN Zong-ji, DONG Da-ying, ZHENG Ran, WANG Min-zeng, WANG Qi-feng, GUAN Wen-bin. Avian community diversity in Platycladus orientalis ancient trees at the Jingfu Temple in Beijing.[J]. Journal of Beijing Forestry University, 2013, 35(5): 46-55. |
[10] | HU Wan-liang, TAN Xue-ren, KONG Xiang-wen, DING Lei, XU Qing-xiang, JIN Xin, DING Guo-quan. Effects of disturbance on community structure and higher plant diversity of artificially inducing broad-leaved Korean pine forests[J]. Journal of Beijing Forestry University, 2007, 29(6): 72-78. DOI: 10.13332/j.1000-1522.2007.06.015 |