Citation: | Wang Ping, Wang Dongyang, Wang Jing, Jiang Libo, Wu Rongling. QTL epistasis effect analysis of seedling growth-related traits in Populus euphratica[J]. Journal of Beijing Forestry University, 2018, 40(12): 49-59. DOI: 10.13332/j.1000-1522.20180332 |
[1] |
Silva A T, Ligterink W, Hilhorst H W M. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana[J]. Plant Molecular Biology, 2017, 95(4):481-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=349541da36d214837b0dd468180dcbb3
|
[2] |
Leishman M R, Hughes L, French K, et al. Seed and seedling biology in relation to modelling vegetation dynamics under global climate change[J]. Australian Journal of Botany, 1992, 40(5):599-613. doi: 10.1071/BT9920599
|
[3] |
Zhang M, Bo W, Xu F, et al. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica[J]. The Plant Journal, 2017, 90(5): 918-928. doi: 10.1111/tpj.2017.90.issue-5
|
[4] |
Osunkjoya O O, Ash J E, Hopkins M S, et al. Factors affecting survival of tree seedlings in North Queensland rainforests[J]. Oecologia, 1992, 91(4): 569-578. doi: 10.1007/BF00650333
|
[5] |
Koger C H, Reddy K N, Poston D H. Factors affecting seed germination, seedling emergence, and survival of texasweed (Caperonia palustris)[J]. Weed Science, 2004, 52(6): 989-995. doi: 10.1614/WS-03-139R2
|
[6] |
Von Liebig J F. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie[M]. Braunschweig:Friedrich Vieweg und Sohn Publ. Co, 1842.
|
[7] |
Kaspari M, Garcia M N, Harms K E, et al. Multiple nutrients limit litterfall and decomposition in a tropical forest[J]. Ecology Letters, 2008, 11(1): 35-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1461-0248.2007.01124.x
|
[8] |
Clouse S D. Integration of light and brassinosteroid signals in etiolated seedling growth[J]. Trends in Plant Science, 2001, 6(10): 443-445. doi: 10.1016/S1360-1385(01)02102-1
|
[9] |
Nelson D C, Flematti G R, Ghisalberti E L, et al. Regulation of seed germination and seedling growth by chemical signals from burning vegetation[J]. Annual Review of Plant Biology, 2012, 63: 107-130. doi: 10.1146/annurev-arplant-042811-105545
|
[10] |
Stanga J P, Morffy N, Nelson D C. Functional redundancy in the control of seedling growth by the karrikin signaling pathway[J]. Planta, 2016, 243(6): 1397-1406. doi: 10.1007/s00425-015-2458-2
|
[11] |
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk[J]. Planta, 2017, 245(3): 467-489. doi: 10.1007/s00425-017-2651-6
|
[12] |
Li J, Fu J, Chen Y, et al. The U6 biogenesis-like1 plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA[J]. Molecular Plant, 2017, 10(3): 470-482. doi: 10.1016/j.molp.2016.10.016
|
[13] |
Stewart J L, Maloof J N, Nemhauser J L. PIF genes mediate the effect of sucrose on seedling growth dynamics[J/OL]. PLoS one, 2011, 6(5): e19894[2018-09-27]. https://doi.org/10.1371/journal.pone.0019894
|
[14] |
Hwang J E, Hong J K, Je J H, et al. Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6[J]. Plant Cell Reports, 2009, 28(11): 1623-1632. doi: 10.1007/s00299-009-0762-7
|
[15] |
Liang H, Yu Y, Yang H, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theoretical and Applied Genetics, 2014, 127(10): 2127-2137. doi: 10.1007/s00122-014-2366-z
|
[16] |
Li P, Chen F, Cai H, et al. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis[J]. Journal of Experimental Botany, 2015, 66(11): 3175-3188. doi: 10.1093/jxb/erv127
|
[17] |
Li G, Xu X, Bai G, et al. Genome-wide association mapping reveals novel QTL for seedling leaf rust resistance in a worldwide collection of winter wheat[J]. The Plant Genome, 2016, 9(3): 1-12. https://www.ncbi.nlm.nih.gov/pubmed/27902805
|
[18] |
Genc Y, Oldach K, Verbyla A P, et al. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress[J]. Theoretical and Applied Genetics, 2010, 121(5): 877-894. doi: 10.1007/s00122-010-1357-y
|
[19] |
Bai C, Liang Y, Hawkesford M J. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat[J]. Journal of Experimental Botany, 2013, 64(6): 1745-1753. doi: 10.1093/jxb/ert041
|
[20] |
Takagi H, Uemura A, Yaegashi H, et al. MutMap-Gap: whole-genome resequencing of mutant F 2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii[J]. New Phytologist, 2013, 200(1): 276-283. doi: 10.1111/nph.12369
|
[21] |
Eichler E E, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease[J]. Nature Reviews Genetics, 2010, 11(6): 446-450. doi: 10.1038/nrg2809
|
[22] |
Bloom J S, Ehrenreich I M, Loo W T, et al. Finding the sources of missing heritability in a yeast cross[J]. Nature, 2013, 494: 234. doi: 10.1038/nature11867
|
[23] |
Ma T, Wang J, Zhou G, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nature Communications, 2013, 4: 2797. doi: 10.1038/ncomms3797
|
[24] |
Janz D, Lautner S, Wildhagen H, et al. Salt stress induces the formation of a novel type of 'pressure wood'in two Populus species[J]. New Phytologist, 2012, 194(1): 129-141. doi: 10.1111/j.1469-8137.2011.03975.x
|
[25] |
Hohenlohe P A, Bassham S, Etter P D, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags[J/OL]. PLoS Genetics, 2010, 6(2): e1000862[2018-09-24]. https://doi.org/10.1371/journal.pgen.1000862.
|
[26] |
Topp C N, Iyer-Pascuzzi A S, Anderson J T, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture[J]. Proceedings of the National Academy of Sciences, 2013, 110(18): E1695-E1704. doi: 10.1073/pnas.1304354110
|
[27] |
West G B, Brown J H, Enquist B J. A general model for ontogenetic growth[J]. Nature, 2001, 413: 628. doi: 10.1038/35098076
|
[28] |
Bozdogan H. Model selection and Akaike's information criterion (AIC): the general theory and its analytical extensions[J]. Psychometrika, 1987, 52(3): 345-370. doi: 10.1007/BF02294361
|
[29] |
Ma C X, Casella G, Wu R. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework[J]. Genetics, 2002, 161(4): 1751-1762. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1462199
|
[30] |
Wang Z, Wang N, Wu R, et al. fGWAS: an R package for genome-wide association analysis with longitudinal phenotypes[J]. Journal of Genetics and Genomics, 2018, 45(7): 411. doi: 10.1016/j.jgg.2018.06.006
|
[31] |
Conesa A, Götz S, García-Gómez J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18): 3674-3676. doi: 10.1093/bioinformatics/bti610
|
[32] |
Wang L, Zhao C, Li J, et al. Root plasticity of Populus euphratica seedlings in response to different water table depths and contrasting sediment types[J/OL]. PLoS One, 2015, 10(3): e0118691[2018-09-27]. https://doi.org/10.1371/journal.pone.0118691.
|
[33] |
Mackay T F C. Epistasis and quantitative traits: using model organisms to study gene-gene interactions[J]. Nature Reviews Genetics, 2014, 15(1): 22. doi: 10.1038/nrg3627
|
[34] |
Jiang L, Liu J, Zhu X, et al. 2HiGWAS: a unifying high-dimensional platform to infer the global genetic architecture of trait development[J]. Briefings in Bioinformatics, 2015, 16(6): 905-911. doi: 10.1093/bib/bbv002
|
[35] |
Donohue K. The epigenetics of adaptation: focusing on epigenetic stability as an evolving trait[J]. Evolution, 2014, 68(3): 617-619. doi: 10.1111/evo.12347
|
[36] |
Lachowiec J, Shen X, Queitsch C, et al. A genome-wide association analysis reveals epistatic cancellation of additive genetic variance for root length in Arabidopsis thaliana[J/OL]. PLoS Genetics, 2015, 11(9): e1005541[2018-09-27]. https://doi.org/10.1371/journal.pgen.1005541.
|
[1] | Li Zhu, Jiang Jiali, Lü Jianxiong. Tensile creep characteristics of compression wood and normal wood under different temperatures and loads[J]. Journal of Beijing Forestry University, 2024, 46(12): 138-145. DOI: 10.12171/j.1000-1522.20240277 |
[2] | Wu Haoyang, Niu Jianzhi, Wang Di, Qiu Qihuang, Yang Tao, Yang Shujian. Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility[J]. Journal of Beijing Forestry University, 2023, 45(6): 69-81. DOI: 10.12171/j.1000-1522.20220283 |
[3] | LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Gel permeation chromatography (GPC)high performance liquid chromatographic (HPLC) determination of cytokinin in plant tissues.[J]. Journal of Beijing Forestry University, 2012, 34(6): 155-159. |
[4] | QIU Er-fa, XU Fei, WANG Cheng, DONG Jian-wen, WU Yong-shu, . Population distribution and structure characteristics of village roadside forest in Fujian Province, eastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 68-74. |
[5] | KONG Ying, SUN Ming, PAN Hu-tang, ZHANG Qi-xiang. Advances in metabolism and regulation of floral scent.[J]. Journal of Beijing Forestry University, 2012, 34(2): 146-154. |
[6] | NIAN Hong-li, LI He, CAO Dong-dong, CAO Jian-kang, JIANG Wei-bo. Determination of phenolic compounds in jujube peels at different maturity stages by high performance liquid chromatography.[J]. Journal of Beijing Forestry University, 2011, 33(1): 139-143. |
[7] | WANG Wei, ZHENG Xiao-xian, NING Yang-cui. Structural characteristics of typical water conservation forests in mountain areas of Beijing.[J]. Journal of Beijing Forestry University, 2011, 33(1): 60-63. |
[8] | HU Xiao-dan, ZHANG De-quan, SUN Ai-dong, WANG Jian-zhong, LIU Yu-jun. Separation of perilla ketone by high speed countercurrent chromatography[J]. Journal of Beijing Forestry University, 2007, 29(5): 170-172. DOI: 10.13332/j.1000-1522.2007.05.031 |
[9] | GAO Lin, WANG Nai-kang, GAO Yong. Fuzzy control on air-suction seeding system in the seedling production line[J]. Journal of Beijing Forestry University, 2007, 29(4): 75-79. DOI: 10.13332/j.1000-1522.2007.04.018 |
[10] | CHANG De-long, SONG Zhan-qian, HUANG Wen-hao, HU Wei-hua, LI Fu-hai, ZHANG Quan-lai. Impacts of fungi on chemical components and physical structure of Paulownia elongata wood[J]. Journal of Beijing Forestry University, 2006, 28(3): 145-149. |
1. |
高杰. 天然林保护对生态系统服务功能的影响. 农业灾害研究. 2024(02): 232-234 .
![]() | |
2. |
力佳琪,麦强盛,王俊超. 玉白顶自然保护区森林生态价值评估. 农业与技术. 2024(18): 67-71 .
![]() | |
3. |
潘丰十,牛香,郭珂. 呼伦贝尔市典型生态产品禀赋与价值化实现路径优化. 林业科学. 2024(12): 146-157 .
![]() | |
4. |
严雨桐,陈花丹,游巍斌,刘进山,蔡昌棠,何东进. 基于能值分析的天宝岩泥炭沼泽生态系统服务价值评估. 生态与农村环境学报. 2023(03): 335-343 .
![]() | |
5. |
李保杰,褚帅,顾和和. 淮海经济区生态系统服务价值时空分异特征研究. 地域研究与开发. 2023(02): 167-172 .
![]() | |
6. |
魏媛,吴长勇,洪林. 碳中和导向下贵州省森林资源生态价值评估及生态补偿研究. 自然资源情报. 2023(04): 44-50 .
![]() | |
7. |
赵玉堂. 普达措国家公园森林生态系统服务价值评估与分析. 林业调查规划. 2023(03): 208-213 .
![]() | |
8. |
邓紫君,刘鑫,祖浩然,苏闪闪,陈颖,罗俊毅,闫文德,张翔,王明旭. 湖南省森林型国家级自然保护区森林生态系统服务功能价值评估. 湖南林业科技. 2023(04): 72-80 .
![]() | |
9. |
李连强,杨会侠,丁国泉,李虹谕,白荣芬,王品. 辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同. 北京林业大学学报. 2023(09): 83-94 .
![]() | |
10. |
白晓航,施佳颖. 黑龙江丰林国家级自然保护区红松+紫椴+硕桦群系优势树种生态位特征与种间联结分析. 园林. 2023(10): 14-21 .
![]() | |
11. |
李超,谢飞,苏学威,罗传文. 凉水国家级自然保护区森林生态系统服务功能评估. 中国林副特产. 2023(06): 17-18 .
![]() | |
12. |
党俊. 移植栽培技术在自然保护区天然林保护工程生态修复中的应用. 环境保护与循环经济. 2023(12): 68-71 .
![]() | |
13. |
张颖,刘平辉,朱传民,张林颖. 基于NPP的抚州市生态系统服务功能重要性评价. 贵州农业科学. 2022(02): 133-140 .
![]() | |
14. |
胡建忠. 对我国系统种植开发沙棘的回顾与建议. 防护林科技. 2022(04): 75-77 .
![]() | |
15. |
王晓康. 山西省关帝山国有林区森林生态系统服务功能价值估算研究. 中国农学通报. 2022(23): 49-55 .
![]() | |
16. |
任志华,秦磊. 黑龙江省乡村振兴战略实施下的乡村发展策略. 规划师. 2022(09): 139-144 .
![]() | |
17. |
张卫民. 中国自然保护地生态资产核算框架研究. 自然保护地. 2021(02): 22-30 .
![]() |