• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guan Cheng, Liu Jinhao, Zhang Houjiang, Zhou Lujing. Literature review of mechanical properties of full-size wood composite panels using nondestructive testing technique[J]. Journal of Beijing Forestry University, 2019, 41(9): 164-172. DOI: 10.13332/j.1000-1522.20180379
Citation: Guan Cheng, Liu Jinhao, Zhang Houjiang, Zhou Lujing. Literature review of mechanical properties of full-size wood composite panels using nondestructive testing technique[J]. Journal of Beijing Forestry University, 2019, 41(9): 164-172. DOI: 10.13332/j.1000-1522.20180379

Literature review of mechanical properties of full-size wood composite panels using nondestructive testing technique

More Information
  • Received Date: November 21, 2018
  • Revised Date: May 05, 2019
  • Available Online: July 31, 2019
  • Published Date: August 31, 2019
  • Elastic constants (modulus of elasticity and shear modulus), strength constants and dynamic viscoelasticity are three critical indicators for evaluating the mechanical performance of full-size wood composite panels (WCPs). There is, especially for full-size WCPs, a significant relationship between elastic constants and strength constants. Therefore, many researches on nondestructive testing (NDT) of mechanical properties of full-size WCPs have focused on nondestructively determining their elastic constants and dynamic viscoelasticity. This paper summarizes the mechanical properties and corresponding testing methods of WCPs, and reviews the research on the estimation of elastic constants and dynamic viscoelasticity of WCPs. Furthermore, this paper points out the existing shortcomings of the previous studies and introduces the research progress of our research team on estimating the mechanical properties of full-size WCPs using vibration methods. Thus, the future research goal of NDT for the mechanical properties of full-size WCPs is to develop a rapid and nondestructive technique based on vibration detection theory for directly assessing the mechanical properties of the structural full-size WCPs. Results of these research are to lay a theoretical foundation for achieving fast sampling of structural full-size WCPs in the laboratory and general examination and grading of mechanical properties on the production line in the future.
  • [1]
    梅长彤, 周晓燕, 金菊婉. 人造板[M]. 北京: 中国林业出版社, 2005.

    Mei C H, Zhou X Y, Jin J W. Wood-based panel[M]. Beijing: China Forestry Publishing House, 2005.
    [2]
    唐忠荣, 李克忠. 木质材料性能检测[M]. 北京: 中国林业出版社, 2006.

    Tang Z R, Li K Z. Wood material performance test[M]. Beijing: China Forestry Publishing House, 2006.
    [3]
    刘庆. 中国人造板行业发展专题研究[D]. 上海: 上海外国语大学, 2014.

    Liu Q. Study on development of Chinese wood-based panel industry[D]. Shanghai: Shanghai International Studies University, 2014.
    [4]
    梅长彤, 雍宬. 我国定向刨花板工业发展历史、现状和机遇[J]. 中国人造板, 2016, 23(3):6−9. doi: 10.3969/j.issn.1673-5064.2016.03.002

    Mei C T, Yong C. History, current situation and opportunities of oriented strand board industry development in China[J]. China Wood-based Panels, 2016, 23(3): 6−9. doi: 10.3969/j.issn.1673-5064.2016.03.002
    [5]
    朱光前. 我国人造板产业现状及未来发展方向[J]. 中国人造板, 2017, 24(6):1−7. doi: 10.3969/j.issn.1673-5064.2017.06.001

    Zhu G Q. Status quo and trend of China wood-based panels industry[J]. China Wood-based Panels, 2017, 24(6): 1−7. doi: 10.3969/j.issn.1673-5064.2017.06.001
    [6]
    赵仁杰, 喻云水. 木质材料学[M]. 北京: 中国林业出版社, 2003.

    Zhao R J, Yu Y S. Wood material science[M]. Beijing: China Forestry Publishing House, 2003.
    [7]
    Bodig J, Jayne B A. Mechanics of wood and wood composites[M]. Malabar: Krieger Pub Co, 1993.
    [8]
    Shi B Z, Cai Z Y. Nondestructive evaluation of full-sized particleboard panels using the vibration technique[C]//Pellerin R F, Mcdonald K A. Proceedings of the 9th international symposium on nondestructive testing of wood. Madison: Forest Products Socity, 1994: 117−122.
    [9]
    Schulte M, Frühwald A. Shear modulus, internal bond and density profile of medium density fibre board (MDF)[J]. European Journal of Wood and Wood Products, 1996, 54(1): 49−55. doi: 10.1007/s001070050132
    [10]
    池德汝, 童昕, 林新青. 纤维板的弹性模量及静曲强度的动态检测[J]. 木材加工机械, 2006, 17(5):14−17. doi: 10.3969/j.issn.1001-036X.2006.05.004

    Chi D R, Tong X, Lin X Q. Dynamic detection for Yong ’s modules and bend strength of fiberboard[J]. Wood Processing Machinery, 2006, 17(5): 14−17. doi: 10.3969/j.issn.1001-036X.2006.05.004
    [11]
    全国人造板标准化技术委员会. 人造板及饰面人造板理化性能试验方法: GB/T 17657—2013[S]. 北京:中国标准出版社, 2014.

    National Technical Committee on Wood-based Panels Standardization of China. Test methods of evaluating the properties of wood-based panels and surfaces decorated wood-based panels: GB/T 17657—2013[S]. Beijing: Standards Press of China, 2014.
    [12]
    全国人造板标准化技术委员会. 结构用人造板力学性能试验方法: GB/T 31264—2014[S]. 北京:中国标准出版社, 2015.

    National Technical Committee on Wood-based Panels Standardization of China. Test methods for mechanical properties of structural wood-based panels: GB/T 31264—2014[S]. Beijing: Standards Press of China, 2015.
    [13]
    ASTM D 3043-00. Standard test methods for structural panels in flexure[S]. West Conshohocken: American Society for Testing and Materials, 2011.
    [14]
    张厚江, 管成, 文剑. 木质材料无损检测的应用与研究进展[J]. 林业工程学报, 2016, 1(6):1−9.

    Zhang H J, Guan C, Wen J. Applications and research development of nondestructive testing of wood based materials[J]. Journal of Forestry Engineering, 2016, 1(6): 1−9.
    [15]
    胡英成, 顾继友, 王逢瑚. 木材及人造板物理力学性能无损检测技术研究的发展与展望[J]. 世界林业研究, 2002, 15(4):39−46. doi: 10.3969/j.issn.1001-4241.2002.04.007

    Hu Y C, Gu J Y, Wang F H. Developments and prospects in the research on nondestructive testing of physical and mechanical properties of wood and wood composites[J]. World Forestry Research, 2002, 15(4): 39−46. doi: 10.3969/j.issn.1001-4241.2002.04.007
    [16]
    Bach L. Machine stress rating panel products[C]//Pellerin R F, Mcdonald K A. Proceedings of the 5th symposium on non-destructive testing of wood. Pullman: Washington State University, 1985: 75−98.
    [17]
    Mcnatt J D, Wellwood R W, Bach L. Relationships between small-specimens and large panel bending tests on structural wood-based panels[J]. Forest Products Journal, 1990, 40(9): 10−16.
    [18]
    高燕秋, 王兆伍, 张齐生. TMJ-A人造板弹性模量无损检测显示机的误差因素分析[J]. 木材工业, 2002, 16(5):24−26. doi: 10.3969/j.issn.1001-8654.2002.05.007

    Gao Y Q, Wang Z W, Zhang Q S. Analysis of measuring error on TMJ-a nondestructive testing equipment for structural board[J]. China Wood Industry, 2002, 16(5): 24−26. doi: 10.3969/j.issn.1001-8654.2002.05.007
    [19]
    Dunne M J, Lau K K. Panel testing apparatus and method: US, 6, 055, 867[P]. 2000-5-2.
    [20]
    Brancheriau L, Bailleres H. Natural vibration analysis of clear wooden beams: a theoretical review[J]. Wood Science and Technology, 2002, 36(4): 347−365. doi: 10.1007/s00226-002-0143-7
    [21]
    王志同, 曹志强, 袁卫国. 用应力波非破损检测技术检测中密度纤维板弹性模量的研究[J]. 木材工业, 1995, 9(5):17−25.

    Wang Z T, Cao Z Q, Yuan W G. Study on the modules of elasticity of MDF measured by non-destructive testing technology of stress wave[J]. China Wood Industry, 1995, 9(5): 17−25.
    [22]
    Mirbolouk P, Roohnia M. Evaluation of dynamic modulus of elasticity of medium density fiberboard panel from longitudinal vibration tests on specimens[J]. BioResources, 2015, 10(1): 613−621.
    [23]
    张厚江, 郭志仁, Hunt J F, 等. 薄板类木质材料弹性模量的动态测定[J]. 北京林业大学学报, 2010, 32(2):149−152.

    Zhang H J, Guo Z R, Hunt J F, et al. Measuring modulus of elasticity for thin wood composites using a dynamic method[J]. Journal of Beijing Forestry University, 2010, 32(2): 149−152.
    [24]
    闫海成, 张厚江, Hunt J F, 等. 薄板木质材料剪切模量的动态检测[J]. 北京林业大学学报, 2012, 34(2):137−140.

    Yan H C, Zhang H J, Hunt J F, et al. Dynamic determining of shear modulus of thin wood composite materials[J]. Journal of Beijing Forestry University, 2012, 34(2): 137−140.
    [25]
    Hunt J F, Zhang H J, Guo Z R, et al. Cantilever beam static and dynamic response comparison with mid-point bending for thin MDF composite panels[J]. Bioresources, 2013, 8(1): 115−129.
    [26]
    黄妍. 薄板木质材料力学性能检测分析研究[D]. 北京: 北京林业大学, 2013.

    Huang Y. Study on detection and analysis of mechanical properties for thin wood composites[D]. Beijing: Beijing Forestry University, 2013.
    [27]
    Mclain T E, Bodig J. Determination of elastic parameters of full-size wood composite boards[J]. Forest Products Journal, 1974, 24(4): 48−57.
    [28]
    ASTM D 3044-94. Standard test method for shear modulus of wood-based structural panels[S]. West Conshohocken: American Society for Testing and Materials, 1972.
    [29]
    Nakao T, Okano T. Evaluation of modulus of rigidity by dynamic plate shear testing[J]. Wood and Fiber Science, 1987, 19(4): 332−338.
    [30]
    Bach L, Porter A W. Transverse vibration apparatus for grading wood panels: U.S. Patent 4, 722, 223[P]. 1988-2-2.
    [31]
    Coppens H. Quality control of particleboards by means of their oscillation behavior[C]//Proceedings of FESYP technical conference. Munich: European Federation of Associations of Particleboard Manufactures, 1988: 143−165.
    [32]
    Lau P W, Tardif Y G. Method and apparatus for non-destructive testing the quality of manufacturing wood panels: U.S. 5, 060, 516[P]. 1991-10-29.
    [33]
    Lau P W, Tardif Y G. Evaluation of moduli of elasticity and rigidity of panel products by torsional-bending vibration[R]. Victoria: Canadian Forest Service, 1996.
    [34]
    Sobue N, Katoh A. Simultaneous determination of orthotropic elastic constants of standard full-size plywoods by vibration method[J]. Mokuzai Gakkaishi, 1992, 38(10): 895−902.
    [35]
    Shyamasunder K, Aswathanarayana B S, Naidu M V. Nondestructive evaluation of modulus of elasticity and modulus of rigidity of plywood by sonic methods[C]//Pellerin R F, Mcdonald K A. Proceedings of the 9th international symposium on nondestructive testing of wood. Madison: Forest Products Socity, 1994: 113−116.
    [36]
    Greubul D, Wissing S. Zerstorungsfreie messung des beige-E-moduls und schubmoduls von Spanplatten durch biegeschwingungen[J]. Holz als Roh-und Werkstoff, 1995, 53(1): 29−37. doi: 10.1007/BF02716382
    [37]
    Schulte M, Frühwald A, Broker F W. Non-destructive testing of panel products by vibration technique[C]//Sandoz J L, Pellerin R F, Mcdonald K A. Proceedings of the 10th international symposium on nondestructive testing of wood. Lausanne: IBOIS-Chair of Timber Construction of the Swiss Federal Institute of Technology, 1996: 259−268.
    [38]
    Larsson D. Stiffness characterization of wood based panels by modal testing[C]//Sandoz J L, Pellerin R F, Mcdonald K A. Proceedings of the 10th international symposium on nondestructive testing of wood. Lausanne: IBOIS-Chair of Timber Construction of the Swiss Federal Institute of Technology, 1996: 237−246.
    [39]
    Zhou J H, Chui Y H. Efficient measurement of elastic constants of cross laminated timber using modal testing[C]//World conference on timber engineering. Quebec, Canada, 2014: 10−14.
    [40]
    Zhou J H, Chui Y H, Gong M, et al. Simultaneous measurement of elastic constants of full-size engineered wood-based panels by modal testing[J]. Holzforschung, 2016, 70(7): 673−682.
    [41]
    Zhou J H, Chui Y H. Influence of boundary conditions on measurement of elastic constants of engineered wood-based panels using modal testing[C]//Ross R J, Gonçalves R. Proceedings of 19th international nondestructive testing and evaluation of wood symposium. Rio de Janeiro: Forest Products Society, 2015: 321−332.
    [42]
    Zhou J H, Ying H C, Gong M, et al. Comparative study on measurement of elastic constants of wood-based panels using modal testing: choice of boundary conditions and calculation methods[J]. Journal of Wood Science, 2017, 63(5): 1−16.
    [43]
    Larsson D. Using modal analysis for estimation of anisotropic material constants[J]. Journal of Engineering Mechanics, 1997, 123(3): 222−229. doi: 10.1061/(ASCE)0733-9399(1997)123:3(222)
    [44]
    Niederwestberg J, Zhou J H, Chui Y H. Influence of boundary conditions in modal testing on evaluated elastic properties of timber panels[C]//World conference on timber engineering. Quebec, Canada, 2014: 10−14.
    [45]
    Gsell D, Feltrin G, Schubert S, et al. Cross-laminated timber plates: evaluation and verification of homogenized elastic properties[J]. Journal of Structural Engineering, 2007, 133(1): 132−138. doi: 10.1061/(ASCE)0733-9445(2007)133:1(132)
    [46]
    Reddy J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4): 745−752. doi: 10.1115/1.3167719
    [47]
    周海宾, 任海青, 费本华, 等. 木质复合板弯曲、剪切弹性模量动态测试[J]. 建筑材料学报, 2007, 10(5):561−565. doi: 10.3969/j.issn.1007-9629.2007.05.012

    Zhou H B, Ren H Q, Fei B H, et al. Dynamical test on flexural and shear modulus of composite wood panels[J]. Journal of Building Materials, 2007, 10(5): 561−565. doi: 10.3969/j.issn.1007-9629.2007.05.012
    [48]
    闫海成, 张厚江, 朱磊, 等. 浅谈木质材料黏弹性的研究和发展现状[J]. 林业机械与木工设备, 2011, 39(8):20−24. doi: 10.3969/j.issn.2095-2953.2011.08.008

    Yan H C, Zhang H J, Zhu L, et al. A brief talk on the research and developing status of viscoelasticity of wooden material[J]. Forestry Machinery & Woodworking Equipment, 2011, 39(8): 20−24. doi: 10.3969/j.issn.2095-2953.2011.08.008
    [49]
    Cai Z Y, Fridley K J, Hunt M O, et al. Creep and creep-recovery models for wood under high stress levels[J]. Wood and Fiber Science, 2002, 34(3): 425−433.
    [50]
    Thompson R J H, Ansell M P, Bonfield P W, et al. Fatigue in wood-based panels. (Part 1): the strength variability and fatigue performance of OSB, chipboard and MDF[J]. Wood Science and Technology, 2002, 36(3): 255−269. doi: 10.1007/s00226-001-0136-y
    [51]
    袁纳新. 中密度纤维板黏弹性研究[D]. 广州: 华南农业大学, 2004.

    Yuan N X. Study on visco-elasticity of MDF[D]. Guangzhou: South China Agricultural University, 2004.
    [52]
    黄妍, 张厚江, 刘妍, 等. 基于悬臂梁弯曲的薄板木质材料应力松弛检测[J]. 北京林业大学学报, 2012, 34(4):149−153.

    Huang Y, Zhang H J, Liu Y, et al. Detection and analysis on the stress relaxation properties of thin wood composites based on cantilever-beam bending[J]. Journal of Beijing Forestry University, 2012, 34(4): 149−153.
    [53]
    Hunt J F, Zhang H J, Huang Y. Analysis of cantilever-beam bending stress relaxation properties of thin wood composites[J]. BioResources, 2015, 10(2): 3131−3145.
    [54]
    Nolle A W. Methods for measuring dynamic mechanical properties of rubber-like materials[J]. Journal of Applied Physics, 1948, 19(8): 753−774. doi: 10.1063/1.1698201
    [55]
    Moslemi A A. Dynamic viscoelasticity in hardboard[J]. Forest Products Journal, 1967, 17(1): 25−33.
    [56]
    闫海成. 木质材料动态黏弹性及剪切模量检测技术研究[D]. 北京:北京林业大学, 2012.

    Yan H C. Determining dynamic viscoelasticity and shear modulus of wood composites[D]. Beijing: Beijing Forestry University, 2012.
    [57]
    张厚江, 周卢婧, 吴江. 足尺人造板弹性模量和动态粘弹性无损检测装置与检测方法: CN103439251A[P]. 2013-12-11.

    Zhang H J, Zhou L J, Wu J. Nondestructive full-scale artificial board elasticity modulus and dynamic viscoelasticity testing device and method: CN103439251A[P]. 2013-12-11.
    [58]
    Zhou L J, Zhang H J, Guan C, et al. Analysis of vibration modal testing for the full-size artificial board[J]. Journal of Multimedia, 2014, 9(6): 816−821.
    [59]
    管成, 周卢婧, 张厚江. 足尺中密度纤维板振动模态分析[J]. 西北林学院学报, 2015, 30(3):228−233. doi: 10.3969/j.issn.1001-7461.2015.03.40

    Guan C, Zhou L J, Zhang H J. Analysis of the vibration modal of the full-sized medium density fiberboard[J]. Journal of Northwest Forestry University, 2015, 30(3): 228−233. doi: 10.3969/j.issn.1001-7461.2015.03.40
    [60]
    管成, 张厚江, 周卢婧, 等. 足尺人造板动态黏弹性检测[J]. 南京林业大学学报(自然科学版), 2015, 39(6):131−136.

    Guan C, Zhang H J, Zhou L J, et al. Detection on dynamic viscoelasticity of full-size wood composite panels[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 131−136.
    [61]
    管成, 周卢婧, 张厚江, 等. 用振动方式测定足尺人造板弹性模量[J]. 浙江农林大学学报, 2016, 33(6):1067−1072. doi: 10.11833/j.issn.2095-0756.2016.06.020

    Guan C, Zhou L J, Zhang H J , et al. Measuring modulus of elasticity of full-size wood composite panels using vibration method[J]. Journal of Zhejiang A&F University, 2016, 33(6): 1067−1072. doi: 10.11833/j.issn.2095-0756.2016.06.020
    [62]
    祖汉松. 足尺人造板力学性能无损检测样机总体设计与关键问题研究[D]. 北京: 北京林业大学, 2015.

    Zu H S. Overall design and key issues study of mechanical properties nondestructive testing prototype of the full-size wood composite panels[D]. Beijing: Beijing Forestry University, 2015.
    [63]
    贺昌勇. 基于虚拟仪器的足尺人造板力学性能无损检测样机控制系统研究[D]. 北京: 北京林业大学, 2015.

    He C Y. Control system of mechanical properties nondestructive testing prototype of the full-size wood composite panels based on virtual instruments[D]. Beijing: Beijing Forestry University, 2015.
    [64]
    李金虎. 足尺人造板力学性能检测装置信号处理硬件系统研究[D]. 北京: 北京林业大学, 2015.

    Li J H. Study on hardware system of signal processing for mechanical property test apparatus of full-size wood composite panels[D]. Beijing: Beijing Forestry University, 2015.
    [65]
    王天伟. 足尺人造板力学性能无损检测样机测控系统可靠性分析及优化研究[D]. 北京: 北京林业大学, 2017.

    Wang T W. Reliability analysis and optimization study of measurement and control system of mechanical properties nondestructive testing prototype of the full-size wood composite panels[D]. Beijing: Beijing Forestry University, 2017.
    [66]
    管成, 张厚江, 苗虎, 等. 大尺寸人造板弹性模量和面内剪切模量的无损检测方法: CN106093197B[P]. 2019-04-05.

    Guan C, Zhang H J, Miao H, et al. Nondestructive detection method for elastic modulus and in plane shear modulus of large-size wood based panel: CN106093197B[P]. 2019-04-05.
    [67]
    Guan C, Zhang H J, Wang X P, et al. Experimental and theoretical modal analysis of full-sized wood composite panels supported on four nodes[J]. Materials, 2017, 10(6): 683. doi: 10.3390/ma10060683
    [68]
    管成, 张厚江, 苗虎, 等. 无损检测足尺人造板弹性模量和面内剪切模量[J]. 南京林业大学学报(自然科学版), 2017, 41(4):153−159.

    Guan C, Zhang H J, Miao H, et al. Non-destructive determination of modulus of elasticity and in-plane shear modulus of full-size wood composite panels[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4): 153−159.
    [69]
    季梦婷. 大尺寸人造板力学性能无损检测装置设计与研究[D]. 北京: 北京林业大学, 2017.

    Ji M T. Design and study of mechanical properties testing apparatus of large-size wood composite panels[D]. Beijing: Beijing Forestry University, 2017.
    [70]
    管成. 面向力学性能评估的足尺人造板四节点支承振动检测研究[D]. 北京: 北京林业大学, 2018.

    Guan C. Evaluation of mechanical properties of full-size wood composite panels supported on four nodes using vibration methods[D]. Beijing: Beijing Forestry University, 2018.
    [71]
    ANSI/APA PRG 320-2018, Standard for performance-rated cross-laminated timber[S]. Tacoma: The Engineered Wood Association, 2018.
  • Related Articles

    [1]Zhang Houjiang, Li Yufeng. Content and research progress in nondestructive testing of wooden structures in ancient architecture[J]. Journal of Beijing Forestry University, 2024, 46(4): 1-13. DOI: 10.12171/j.1000-1522.20240015
    [2]Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351
    [3]Li Huan, Guan Cheng, Zhang Houjiang, Liu Jinhao, Zhou Jianhui, Xin Zhenbo. Determining modulus of elasticity of full-size plywood panel simply supported on two opposite sides using a vibration method[J]. Journal of Beijing Forestry University, 2021, 43(2): 138-149. DOI: 10.12171/j.1000-1522.20200300
    [4]WANG Yun-lu, WANG Zheng, LI Min-min, CAO Yu. Discussion on static testing method of material MDF constants of elastic modulus, Poisson's ratio and shear modulus[J]. Journal of Beijing Forestry University, 2017, 39(10): 117-121. DOI: 10.13332/j.1000-1522.20170107
    [5]FENG Li, QIN Nan. Dominant factor analysis of dynamic Young modulus of poplar LVL.[J]. Journal of Beijing Forestry University, 2012, 34(4): 146-148.
    [6]ZHANG Hou-jiang, GUO Zhi-ren, John F Hunt, FU Feng. Measuring modulus of elasticity for thin wood composites using a dynamic method[J]. Journal of Beijing Forestry University, 2010, 32(2): 149-152.
    [7]ZHAN Jianfeng, GU Jiyou, CAI Yingchun.. Dynamic viscoelastic characteristics of larch timber during conventional drying process. [J]. Journal of Beijing Forestry University, 2009, 31(1): 125-129.
    [8]JIANG Jiali, LV Jian-xiong.. Dynamic viscoelastic properties of drying treated wood.[J]. Journal of Beijing Forestry University, 2008, 30(3): 96-100.
    [9]JIANG Jia-li, LÜ Jian-xiong, ZHAO Guang-jie. Viscoelastic properties of wood treated by different reagents[J]. Journal of Beijing Forestry University, 2006, 28(1): 88-92.
    [10]ZHANG Hou-jiang, SHEN Shi-jie, CUI Ying-ying, MIAO Yi, WANG Ying-kun. Measuring elastic modulus of wood using vibration method[J]. Journal of Beijing Forestry University, 2005, 27(6): 91-94.
  • Cited by

    Periodical cited type(4)

    1. 李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
    2. 李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 . 本站查看
    3. 管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 . 本站查看
    4. 李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .

    Other cited types(4)

Catalog

    Article views (3561) PDF downloads (69) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return