• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Yixuan, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Li Jun. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78-87. DOI: 10.13332/j.1000-1522.20180398
Citation: Xu Yixuan, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Li Jun. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78-87. DOI: 10.13332/j.1000-1522.20180398

Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains

More Information
  • Received Date: December 05, 2018
  • Revised Date: January 16, 2019
  • Available Online: April 29, 2019
  • Published Date: March 31, 2019
  • ObjectiveSoil respiration is one of main components in carbon cycle of the terrestrial ecosystems. In this study, the difference of temperature sensitivity coefficient (Q10) between soil respiration of Robinia pseudoacacia plantation and soil temperature of each soil layer was examined and the time lag between soil respiration and soil temperature of each soil layer was investigated on annual scale and daily scale.
    MethodSoil respiration was measured using an automatic positioning observation system Li-8150 in the 50-year-old Robinia pseudoacacia plantation in the south of the Taihang Mountains.
    Resulton the annual scale, soil respiration of Robinia pseudoacacia plantation and the temperature of each soil layer had no time lag and showed a significant exponential relationship (P < 0.001) so that their phase need not be calibrated. Q10 varied from 2.23 to 2.53, increased slightly with the measurement depth of soil temperature and the correlation coefficient (R2) of the exponential model decreased slightly with the measurement depth of soil temperature. On the daily scale, soil respiration and the temperature of each soil layer had a time lag with small R2 and inaccurate Q10. Soil respiration and temperature of each soil layer need to be calibrated in phase to obtain a better R2 and more accurate Q10. Q10 increased with the measurement depth of soil temperature after the phase was calibrated, but Q10 measured in subsoil (> 20 cm) was too large for biological characteristics. The increase of Q10 with soil depth was related with the temperature amplitude of soil layer at the surface layer (< 20 cm).
    ConclusionOn the annual scale, the difference of the Q10 value of each soil layer was not evident, which can reflect the relationship between soil respiration of Robinia pseudoacacia plantation and temperature. On a daily scale, surface Q10 is recommended to reflect the relationship between soil respiration of Robinia pseudoacacia plantation and soil temperature.
  • [1]
    谷蕊, 潮洛濛, 张立欣, 等. 水热因子对克氏针茅草原土壤呼吸及其土壤温度敏感性的影响[J]. 草业学报, 2015, 24(4):21−29.

    Gu R, Chao L M, Zhang L X, et al. The influence of hydrothermal factors on soil respiration and soil temperature sensitivity of Stipakrylovii steppe, Inner Mongolia, China[J]. Acta Prataculture Sinica, 2015, 24(4): 21−29.
    [2]
    陈骥, 曹军骥, 魏永林, 等. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6):78−86.

    Chen J, Cao J J, Wei Y L, et al. Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China[J]. Acta Pedologica Sinica, 2014, 23(6): 78−86.
    [3]
    黄石德, 叶功富, 林捷, 等. 干旱对土壤剖面不同深度土壤CO2通量的影响[J]. 生态学报, 2018, 38(23):8475−8488.

    Huang S D, Ye G F, Lin J, et al. The influence of drought on the soil CO2 flux at different depths in soil vertical profiles[J]. Acta Ecologica Sinica, 2018, 38(23): 8475−8488.
    [4]
    欧强, 王江涛, 周剑虹, 等. 滨海湿地不同水位梯度下的土壤CO2通量比较[J]. 应用与环境生物学报, 2014, 20(6):992−998.

    Ou Q, Wang J T, Zhou J H, et al. Comparison of soil CO2 flux among different water levels in coastal wetlands[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 992−998.
    [5]
    范分良, 黄平容, 唐勇军, 等. 微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J]. 环境科学, 2012, 33(3):932−937.

    Fan F L, Huang P R, Tang Y J, et al. Altered microbial communities change soil respiration rates and their temperature sensitivity[J]. Environmental Science, 2012, 33(3): 932−937.
    [6]
    李炳垠. 毛乌素沙地生物结皮的光合及土壤CO2通量特征研究[D]. 杨凌: 西北农林科技大学, 2018.

    Li B Y. The study of characteristics of photosynthetic and soil CO2 flux of biocrusts in Mu Us Sandland[D]. Yangling: Northwest A & F University, 2018.
    [7]
    Zhang Q, Phillips R P, Manzoni S, et al. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship[J]. Agricultural and Forest Meteorology, 2018, 259: 184−195. doi: 10.1016/j.agrformet.2018.05.005
    [8]
    Zeng W, Zhang J, Wang W. Strong root respiration response to nitrogen and phosphorus addition in nitrogen-limited temperate forests[J]. Science of The Total Environment, 2018, 642: 646−655. doi: 10.1016/j.scitotenv.2018.06.014
    [9]
    Conant R T, Drijber R A, Haddix M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2010, 14(4): 868−877.
    [10]
    Zhou X, Xu X, Zhou G, et al. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: field incubation and data assimilation[J]. Global Change Biology, 2018, 24(2): 810−822. doi: 10.1111/gcb.2018.24.issue-2
    [11]
    Soe A R, Buchmann N. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest[J]. Tree Physiology, 2005, 25(11): 1427. doi: 10.1093/treephys/25.11.1427
    [12]
    谢明德, 陈明智, 吴蔚东, 等. 施肥及环境因子对海南热带橡胶林土壤呼吸的影响[J]. 生态环境学报, 2014, 23(3):430−438. doi: 10.3969/j.issn.1674-5906.2014.03.010

    Xie M D, Chen M Z, Wu W D, et al. Effect of fertilization and environmental factors on soil respiration in tropical rubber plantation in Hainan[J]. Ecology and Environmental Sciences, 2014, 23(3): 430−438. doi: 10.3969/j.issn.1674-5906.2014.03.010
    [13]
    陈亮, 刘子亭, 韩广轩, 等. 环境因子和生物因子对黄河三角洲滨海湿地土壤呼吸的影响[J]. 应用生态学报, 2016, 27(6):1795−1803.

    Chen L, Liu Z T, Han G X, et al. Effects of environmental and biotic factors on soil respiration in a coastal wetland in the Yellow River Delta[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1795−1803.
    [14]
    Feng J G, Wang J S, Song Y J, et al. Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China[J]. Biogeosciences, 2018, 15(17): 5329−5341. doi: 10.5194/bg-15-5329-2018
    [15]
    Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315−323. doi: 10.2307/2389824
    [16]
    姜继韶, 郭胜利, 王蕊, 等. 施氮对黄土旱塬区春玉米土壤呼吸和温度敏感性的影响[J]. 环境科学, 2015, 36(5):1802−1809.

    Jiang J S, Guo S L, Wang R, et al. Effect of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on Loess Plateau[J]. Enviromental Science, 2015, 36(5): 1802−1809.
    [17]
    邓翠, 吕茂奎, 曾敏, 等. 红壤侵蚀区植被恢复对土壤呼吸及其温度敏感性的影响[J]. 土壤学报, 2019, 56(1):135−145.

    Deng C, Lü M K, Zeng M, et al. Impacts of vegetation restoration on soil respiration and its sensitivity to temperature in eroded red soil area[J]. Acta Pedologica Sinica, 2019, 56(1): 135−145.
    [18]
    Phillips C L, Nickerson N, Risk D, et al. Interpreting diel hysteresis between soil respiration and temperature[J]. Global Change Biology, 2011, 17(1): 515−527. doi: 10.1111/gcb.2010.17.issue-1
    [19]
    Pavelka M, Acosta M, Marek M V, et al. Dependence of the Q10 values on the depth of the soil temperature measuring point[J]. Plant and Soil, 2007, 292(1-2): 171−179. doi: 10.1007/s11104-007-9213-9
    [20]
    Vargas R, Baldocchi D D, Allen M F, et al. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux[J]. Ecological Applications: a Publication of the Ecological Society of America, 2010, 20(6): 1569−1582. doi: 10.1890/09-0693.1
    [21]
    Stockfors J. Temperature variations and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up[J]. Tree Physiology, 2000, 20(15): 1057−1062. doi: 10.1093/treephys/20.15.1057
    [22]
    Wang X, Piao S, Ciais P, et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality[J]. Soil Biology and Biochemistry, 2010, 42(10): 1728−1734. doi: 10.1016/j.soilbio.2010.06.008
    [23]
    Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest[J]. Global Biogeochemical Cycles, 2001, 15(3): 687−696. doi: 10.1029/2000GB001365
    [24]
    Davidson E. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 2010, 4(2): 217−227.
    [25]
    Graf A, Weihermüller L, Huisman J A, et al. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies[J]. Biogeosciences, 2008, 5(4): 1175−1188. doi: 10.5194/bg-5-1175-2008
    [26]
    Zhang Q, Katul G G, Oren R, et al. The hysteresis response of soil CO2 concentration and soil respiration to soil temperature[J]. Journal of Geophysical Research Biogeosciences, 2015, 120(8): 1605−1618. doi: 10.1002/2015JG003047
    [27]
    赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.

    Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
    [28]
    庄静静, 张劲松, 孟平, 等. 华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J]. 东北林业大学学报, 2015, 43(10):72−78. doi: 10.3969/j.issn.1000-5382.2015.10.015

    Zhuang J J, Zhang J S, Meng P, et al. Response of soil CH4 fluxes on the pulse precipitation in low hilly land of North China[J]. Journal of Northeast Forestry University, 2015, 43(10): 72−78. doi: 10.3969/j.issn.1000-5382.2015.10.015
    [29]
    赵娜. 太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理[D]. 北京: 中国林业科学研究院, 2014.

    Zhao N. The components and influence mechanism of soil carbon flux under different land use types in hilly area of southern Taihang Mountains, China[D]. Beijing:Chinese Academy of Forestry, 2014.
    [30]
    Vries F W T P D. The cost of maintenance processes in plant cells[J]. Annals of Botany, 1975, 39(1): 77−92. doi: 10.1093/oxfordjournals.aob.a084919
    [31]
    Amthor J S. Plant respiratory responses to the environmental and their effects on the carbon balance[M]//Willkinson R E. Plant-environment interactions. New York: Marcel Dekker, 1994: 501−554.
    [32]
    Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences, 2014, 11(6): 9213−9242.
    [33]
    王娟. 宝天曼森林凋落物分解与土壤呼吸特征研究[D]. 北京: 北京林业大学, 2015.

    Wang J. Forest litter decomposition and soil respiration characteristics in baotianman[D]. Beijing: Beijing Forestry University, 2015.
    [34]
    刘春霞, 王玉杰, 王云琦, 等. 重庆缙云山3种林型土壤呼吸及其影响因子[J]. 土壤通报, 2013, 44(3):587−593.

    Liu C X, Wang Y J, Wang Y Q, et al. Soil respiration and impact factors of 3 forest types in Jinyun Mountain of Chongqing[J]. Chinese Journal of Soil Science, 2013, 44(3): 587−593.
    [35]
    周政达, 张蕊, 高升华, 等. 模拟氮沉降对长江滩地杨树林土壤呼吸温度敏感性的影响[J]. 生态学报, 2015, 35(21):6947−6956.

    Zhou Z D, Zhang R, Gao S H, et al. Effects of simulated nitrogen deposition on temperature sensitivity of soil respiration components in Populus L. plantations in a riparian zone of the Yangtze River[J]. Acta Ecologica Sinica, 2015, 35(21): 6947−6956.
    [36]
    王慧梅, 祖元刚, 李雪莹, 等. 林木非同化器官与土壤呼吸的温度系数Q10值的特征分析[J]. 植物生态学报, 2005, 29(4):680−691. doi: 10.3321/j.issn:1005-264X.2005.04.022

    Wang H M, Zu Y G, Li X Y, et al. Characteristics of root, stem, and soil respiration Q10 temperature coefficients in forest ecosystems[J]. Acta Phytoecologica Sinica, 2005, 29(4): 680−691. doi: 10.3321/j.issn:1005-264X.2005.04.022
    [37]
    展小云, 于贵瑞, 郑泽梅, 等. 中国区域陆地生态系统土壤呼吸碳排放及其空间格局: 基于通量观测的地学统计评估[J]. 地理科学进展, 2012, 31(1):97−108.

    Zhan X Y, Yu G R, Zheng Z M, et al. Carbon emission and spatial pattern of soil respiration of terrestrial ecosystems in China: based on geostatistic estimation of flux measurement[J]. Progress in Geography, 2012, 31(1): 97−108.
    [38]
    Kuzyakov Y, Gavrichkova O. Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls[J]. Global Change Biology, 2010, 16(12): 3386−3406. doi: 10.1111/j.1365-2486.2010.02179.x
    [39]
    Vargas R, Allen M F. Diel patterns of soil respiration in a tropical forest after Hurricane Wilma[J]. Journal of Geophysical Research, 2008, 113(G3): 1−10.
    [40]
    Savage K, Davidson E A, Tang J. Diel patterns of autotrophic and heterotrophic respiration among phenological stages[J]. Global Change Biology, 2013, 19(4): 1151−1159. doi: 10.1111/gcb.12108
    [41]
    Mencuccini M, Hölttä T. The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked[J]. New Phytologist, 2010, 185(1): 189−203. doi: 10.1111/j.1469-8137.2009.03050.x
    [42]
    Vargas R, Baldocchi D D, Bahn M, et al. On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations[J]. New Phytologist, 2011, 191(4): 1006−1017. doi: 10.1111/nph.2011.191.issue-4
    [43]
    廖艳. 我国典型低温区土壤有机碳变化及土壤呼吸特征[D]. 北京: 中国地质大学, 2011.

    Liao Y. Soil organic carbon change and soil respiration characteristics in the typical regions with low temperature in China[D]. Beijing: China University of Geosciences, 2011.
    [44]
    Luo Y, Zhou X. Soil respiration and the environment[M]. New York: Academic Press, 2006.
    [45]
    Hirano T, Kim H, Tanaka Y. Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest[J/OL]. Journal of Geophysical Research Atmospheres, 2003, 108(20): 4631. (2003−10−18) [2017−12−02]. https://doi.org/10.1029/2003JD003766.
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(2)

    1. 韩蓉,马燕,敖羽,张婷,孟新涛,许铭强,潘俨. 基于多元分析法综合评价新疆不同品种大果沙棘汁品质特性及加工适宜性. 食品工业科技. 2025(03): 322-332 .
    2. 李元朝,黎勤吉,郭玉琼,郝志龙,金珊. 枸杞茶感官审评方法的建立及其主要呈香物质的探索. 食品工业科技. 2025(04): 30-41 .

    Other cited types(0)

Catalog

    Article views (1861) PDF downloads (63) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return