Citation: | Xu Yixuan, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Li Jun. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78-87. DOI: 10.13332/j.1000-1522.20180398 |
[1] |
谷蕊, 潮洛濛, 张立欣, 等. 水热因子对克氏针茅草原土壤呼吸及其土壤温度敏感性的影响[J]. 草业学报, 2015, 24(4):21−29.
Gu R, Chao L M, Zhang L X, et al. The influence of hydrothermal factors on soil respiration and soil temperature sensitivity of Stipakrylovii steppe, Inner Mongolia, China[J]. Acta Prataculture Sinica, 2015, 24(4): 21−29.
|
[2] |
陈骥, 曹军骥, 魏永林, 等. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6):78−86.
Chen J, Cao J J, Wei Y L, et al. Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China[J]. Acta Pedologica Sinica, 2014, 23(6): 78−86.
|
[3] |
黄石德, 叶功富, 林捷, 等. 干旱对土壤剖面不同深度土壤CO2通量的影响[J]. 生态学报, 2018, 38(23):8475−8488.
Huang S D, Ye G F, Lin J, et al. The influence of drought on the soil CO2 flux at different depths in soil vertical profiles[J]. Acta Ecologica Sinica, 2018, 38(23): 8475−8488.
|
[4] |
欧强, 王江涛, 周剑虹, 等. 滨海湿地不同水位梯度下的土壤CO2通量比较[J]. 应用与环境生物学报, 2014, 20(6):992−998.
Ou Q, Wang J T, Zhou J H, et al. Comparison of soil CO2 flux among different water levels in coastal wetlands[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 992−998.
|
[5] |
范分良, 黄平容, 唐勇军, 等. 微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J]. 环境科学, 2012, 33(3):932−937.
Fan F L, Huang P R, Tang Y J, et al. Altered microbial communities change soil respiration rates and their temperature sensitivity[J]. Environmental Science, 2012, 33(3): 932−937.
|
[6] |
李炳垠. 毛乌素沙地生物结皮的光合及土壤CO2通量特征研究[D]. 杨凌: 西北农林科技大学, 2018.
Li B Y. The study of characteristics of photosynthetic and soil CO2 flux of biocrusts in Mu Us Sandland[D]. Yangling: Northwest A & F University, 2018.
|
[7] |
Zhang Q, Phillips R P, Manzoni S, et al. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship[J]. Agricultural and Forest Meteorology, 2018, 259: 184−195. doi: 10.1016/j.agrformet.2018.05.005
|
[8] |
Zeng W, Zhang J, Wang W. Strong root respiration response to nitrogen and phosphorus addition in nitrogen-limited temperate forests[J]. Science of The Total Environment, 2018, 642: 646−655. doi: 10.1016/j.scitotenv.2018.06.014
|
[9] |
Conant R T, Drijber R A, Haddix M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2010, 14(4): 868−877.
|
[10] |
Zhou X, Xu X, Zhou G, et al. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: field incubation and data assimilation[J]. Global Change Biology, 2018, 24(2): 810−822. doi: 10.1111/gcb.2018.24.issue-2
|
[11] |
Soe A R, Buchmann N. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest[J]. Tree Physiology, 2005, 25(11): 1427. doi: 10.1093/treephys/25.11.1427
|
[12] |
谢明德, 陈明智, 吴蔚东, 等. 施肥及环境因子对海南热带橡胶林土壤呼吸的影响[J]. 生态环境学报, 2014, 23(3):430−438. doi: 10.3969/j.issn.1674-5906.2014.03.010
Xie M D, Chen M Z, Wu W D, et al. Effect of fertilization and environmental factors on soil respiration in tropical rubber plantation in Hainan[J]. Ecology and Environmental Sciences, 2014, 23(3): 430−438. doi: 10.3969/j.issn.1674-5906.2014.03.010
|
[13] |
陈亮, 刘子亭, 韩广轩, 等. 环境因子和生物因子对黄河三角洲滨海湿地土壤呼吸的影响[J]. 应用生态学报, 2016, 27(6):1795−1803.
Chen L, Liu Z T, Han G X, et al. Effects of environmental and biotic factors on soil respiration in a coastal wetland in the Yellow River Delta[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1795−1803.
|
[14] |
Feng J G, Wang J S, Song Y J, et al. Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China[J]. Biogeosciences, 2018, 15(17): 5329−5341. doi: 10.5194/bg-15-5329-2018
|
[15] |
Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315−323. doi: 10.2307/2389824
|
[16] |
姜继韶, 郭胜利, 王蕊, 等. 施氮对黄土旱塬区春玉米土壤呼吸和温度敏感性的影响[J]. 环境科学, 2015, 36(5):1802−1809.
Jiang J S, Guo S L, Wang R, et al. Effect of nitrogen fertilization on soil respiration and temperature sensitivity in spring maize field in semi-arid regions on Loess Plateau[J]. Enviromental Science, 2015, 36(5): 1802−1809.
|
[17] |
邓翠, 吕茂奎, 曾敏, 等. 红壤侵蚀区植被恢复对土壤呼吸及其温度敏感性的影响[J]. 土壤学报, 2019, 56(1):135−145.
Deng C, Lü M K, Zeng M, et al. Impacts of vegetation restoration on soil respiration and its sensitivity to temperature in eroded red soil area[J]. Acta Pedologica Sinica, 2019, 56(1): 135−145.
|
[18] |
Phillips C L, Nickerson N, Risk D, et al. Interpreting diel hysteresis between soil respiration and temperature[J]. Global Change Biology, 2011, 17(1): 515−527. doi: 10.1111/gcb.2010.17.issue-1
|
[19] |
Pavelka M, Acosta M, Marek M V, et al. Dependence of the Q10 values on the depth of the soil temperature measuring point[J]. Plant and Soil, 2007, 292(1-2): 171−179. doi: 10.1007/s11104-007-9213-9
|
[20] |
Vargas R, Baldocchi D D, Allen M F, et al. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux[J]. Ecological Applications: a Publication of the Ecological Society of America, 2010, 20(6): 1569−1582. doi: 10.1890/09-0693.1
|
[21] |
Stockfors J. Temperature variations and distribution of living cells within tree stems: implications for stem respiration modeling and scale-up[J]. Tree Physiology, 2000, 20(15): 1057−1062. doi: 10.1093/treephys/20.15.1057
|
[22] |
Wang X, Piao S, Ciais P, et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality[J]. Soil Biology and Biochemistry, 2010, 42(10): 1728−1734. doi: 10.1016/j.soilbio.2010.06.008
|
[23] |
Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest[J]. Global Biogeochemical Cycles, 2001, 15(3): 687−696. doi: 10.1029/2000GB001365
|
[24] |
Davidson E. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 2010, 4(2): 217−227.
|
[25] |
Graf A, Weihermüller L, Huisman J A, et al. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies[J]. Biogeosciences, 2008, 5(4): 1175−1188. doi: 10.5194/bg-5-1175-2008
|
[26] |
Zhang Q, Katul G G, Oren R, et al. The hysteresis response of soil CO2 concentration and soil respiration to soil temperature[J]. Journal of Geophysical Research Biogeosciences, 2015, 120(8): 1605−1618. doi: 10.1002/2015JG003047
|
[27] |
赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.
Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
|
[28] |
庄静静, 张劲松, 孟平, 等. 华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J]. 东北林业大学学报, 2015, 43(10):72−78. doi: 10.3969/j.issn.1000-5382.2015.10.015
Zhuang J J, Zhang J S, Meng P, et al. Response of soil CH4 fluxes on the pulse precipitation in low hilly land of North China[J]. Journal of Northeast Forestry University, 2015, 43(10): 72−78. doi: 10.3969/j.issn.1000-5382.2015.10.015
|
[29] |
赵娜. 太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理[D]. 北京: 中国林业科学研究院, 2014.
Zhao N. The components and influence mechanism of soil carbon flux under different land use types in hilly area of southern Taihang Mountains, China[D]. Beijing:Chinese Academy of Forestry, 2014.
|
[30] |
Vries F W T P D. The cost of maintenance processes in plant cells[J]. Annals of Botany, 1975, 39(1): 77−92. doi: 10.1093/oxfordjournals.aob.a084919
|
[31] |
Amthor J S. Plant respiratory responses to the environmental and their effects on the carbon balance[M]//Willkinson R E. Plant-environment interactions. New York: Marcel Dekker, 1994: 501−554.
|
[32] |
Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences, 2014, 11(6): 9213−9242.
|
[33] |
王娟. 宝天曼森林凋落物分解与土壤呼吸特征研究[D]. 北京: 北京林业大学, 2015.
Wang J. Forest litter decomposition and soil respiration characteristics in baotianman[D]. Beijing: Beijing Forestry University, 2015.
|
[34] |
刘春霞, 王玉杰, 王云琦, 等. 重庆缙云山3种林型土壤呼吸及其影响因子[J]. 土壤通报, 2013, 44(3):587−593.
Liu C X, Wang Y J, Wang Y Q, et al. Soil respiration and impact factors of 3 forest types in Jinyun Mountain of Chongqing[J]. Chinese Journal of Soil Science, 2013, 44(3): 587−593.
|
[35] |
周政达, 张蕊, 高升华, 等. 模拟氮沉降对长江滩地杨树林土壤呼吸温度敏感性的影响[J]. 生态学报, 2015, 35(21):6947−6956.
Zhou Z D, Zhang R, Gao S H, et al. Effects of simulated nitrogen deposition on temperature sensitivity of soil respiration components in Populus L. plantations in a riparian zone of the Yangtze River[J]. Acta Ecologica Sinica, 2015, 35(21): 6947−6956.
|
[36] |
王慧梅, 祖元刚, 李雪莹, 等. 林木非同化器官与土壤呼吸的温度系数Q10值的特征分析[J]. 植物生态学报, 2005, 29(4):680−691. doi: 10.3321/j.issn:1005-264X.2005.04.022
Wang H M, Zu Y G, Li X Y, et al. Characteristics of root, stem, and soil respiration Q10 temperature coefficients in forest ecosystems[J]. Acta Phytoecologica Sinica, 2005, 29(4): 680−691. doi: 10.3321/j.issn:1005-264X.2005.04.022
|
[37] |
展小云, 于贵瑞, 郑泽梅, 等. 中国区域陆地生态系统土壤呼吸碳排放及其空间格局: 基于通量观测的地学统计评估[J]. 地理科学进展, 2012, 31(1):97−108.
Zhan X Y, Yu G R, Zheng Z M, et al. Carbon emission and spatial pattern of soil respiration of terrestrial ecosystems in China: based on geostatistic estimation of flux measurement[J]. Progress in Geography, 2012, 31(1): 97−108.
|
[38] |
Kuzyakov Y, Gavrichkova O. Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls[J]. Global Change Biology, 2010, 16(12): 3386−3406. doi: 10.1111/j.1365-2486.2010.02179.x
|
[39] |
Vargas R, Allen M F. Diel patterns of soil respiration in a tropical forest after Hurricane Wilma[J]. Journal of Geophysical Research, 2008, 113(G3): 1−10.
|
[40] |
Savage K, Davidson E A, Tang J. Diel patterns of autotrophic and heterotrophic respiration among phenological stages[J]. Global Change Biology, 2013, 19(4): 1151−1159. doi: 10.1111/gcb.12108
|
[41] |
Mencuccini M, Hölttä T. The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked[J]. New Phytologist, 2010, 185(1): 189−203. doi: 10.1111/j.1469-8137.2009.03050.x
|
[42] |
Vargas R, Baldocchi D D, Bahn M, et al. On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations[J]. New Phytologist, 2011, 191(4): 1006−1017. doi: 10.1111/nph.2011.191.issue-4
|
[43] |
廖艳. 我国典型低温区土壤有机碳变化及土壤呼吸特征[D]. 北京: 中国地质大学, 2011.
Liao Y. Soil organic carbon change and soil respiration characteristics in the typical regions with low temperature in China[D]. Beijing: China University of Geosciences, 2011.
|
[44] |
Luo Y, Zhou X. Soil respiration and the environment[M]. New York: Academic Press, 2006.
|
[45] |
Hirano T, Kim H, Tanaka Y. Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest[J/OL]. Journal of Geophysical Research Atmospheres, 2003, 108(20): 4631. (2003−10−18) [2017−12−02]. https://doi.org/10.1029/2003JD003766.
|
[1] | Jiang Yibing, Song Xiaoshuang, Wang Zhanbin, Wang Liang, Deng Xun, Yu Wenjing. Diversity and community structure of endophytic fungi in Pinus sibirica needles with different lesion grades[J]. Journal of Beijing Forestry University, 2024, 46(11): 24-33. DOI: 10.12171/j.1000-1522.20230299 |
[2] | Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333 |
[3] | Sun Fan, Ma Yanguang, Liu Zhanmin, Yang Boning, Wang Huili, Li Wei. Parental selection strategies of high generation seed orchard of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2024, 46(4): 28-39. DOI: 10.12171/j.1000-1522.20230138 |
[4] | Liu Fengchen, Tian Na, Cheng Xiaoqin. Releasing variation and bacteriostatic effects of botanic volatile organic compounds from Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(9): 72-82. DOI: 10.12171/j.1000-1522.20210125 |
[5] | Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. DOI: 10.12171/j.1000-1522.20200292 |
[6] | Jiang Ning, Mu Changcheng, Han Lidong, Shen Zhongqi. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1-13. DOI: 10.12171/j.1000-1522.20190074 |
[7] | Li Yixuan, Zhao Jian, Fu Shuangbin, Dong Mingliang, Yang Shuo, Li Shanshan, Kong Lisheng, Zhang Jinfeng. Enhancement of embryogenic callus proliferation in Chinese pine (Pinus tabuliformis) by airlift bioreactor[J]. Journal of Beijing Forestry University, 2019, 41(11): 37-43. DOI: 10.13332/j.1000-1522.20190221 |
[8] | GAO Qiong, WANG Wei-you, LIANG Dong, LI Yue.. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 87-93. |
[9] | LI Wei, ZHU Song-lin, LI Yue. Comparative study on plant traits between sexual and asexual reproduction for Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2012, 34(1): 46-50. |
[10] | ZHANG Zhi-du, XU Cheng-yang, CAI Bao-jun, LI Cui-cui, YUAN SHi-bao, YANG Cheng, PENG Qiang, JIN Gui-xiang. Influence of stock density on crown structure of Prunus davidiana.[J]. Journal of Beijing Forestry University, 2009, 31(6): 187-192. |
1. |
张鑫,张丹,代鹏飞,张广森,宋玫. 气候变化下反枝苋潜在中国适生区及生态位研究. 草地学报. 2024(10): 3280-3288 .
![]() | |
2. |
陈禹衡,陆家祎,吴鹏飞,毛岭峰. 基于气候与物种扩散的破坏草入侵区域对未来气候变化的响应. 北京林业大学学报. 2022(01): 69-76 .
![]() | |
3. |
刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 .
![]() | |
4. |
王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 .
![]() | |
5. |
张明珠,叶兴状,李佳慧,刘益鹏,陈世品,刘宝. 气候变化情景下长序榆在中国的潜在适生区预测. 生态学杂志. 2021(12): 3822-3835 .
![]() | |
6. |
吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 .
![]() | |
7. |
塞依丁·海米提,努尔巴依·阿布都沙力克,迈迪娜·吐尔逊,阿尔曼·解思斯,阿腾古丽. 外来入侵植物意大利苍耳在新疆的潜在分布及扩散趋势. 江苏农业科学. 2019(13): 126-130 .
![]() |