Citation: | Li Na, Huang Jin, Geng Yuqing, Dong Ying, Zhang Chaoying. Research on soil enzyme activities of different land types in lakeside of Qinghai Lake, northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(10): 49-56. DOI: 10.13332/j.1000-1522.20180402 |
[1] |
Rodríguez-Murillo J C, Almendros G, Knicker H. Wetland soil organic matter composition in a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain): insight into different carbon sequestration pathways[J]. Organic Geochemistry, 2011, 43(7): 762−773.
|
[2] |
申格, 徐斌, 金云翔, 等. 若尔盖高原湿地研究进展[J]. 地理与地理信息科学, 2016, 32(4):76−89. doi: 10.3969/j.issn.1672-0504.2016.04.013
Shen G, Xu B, Jin Y X, et al. Advances in studies of wetlands in Zoige Plateau[J]. Geography and Geo-Information Science, 2016, 32(4): 76−89. doi: 10.3969/j.issn.1672-0504.2016.04.013
|
[3] |
马维伟, 李广, 石万里, 等. 甘肃尕海湿地退化过程中植物生物量及物种多样性变化动态[J]. 草地学报, 2016, 24(5):960−966. doi: 10.11733/j.issn.1007-0435.2016.05.005
Ma W W, Li G, Shi W L, et al. Changes of plant biomass and species diversity in degradation process of Gahai Wetland in Gansu Province[J]. Acta Agrestia Sinica, 2016, 24(5): 960−966. doi: 10.11733/j.issn.1007-0435.2016.05.005
|
[4] |
刘学敏, 罗久富, 邓东周, 等. 氮添加对不同退化程度高寒草地生态系统的影响[J]. 草业科学, 2018, 35(12):2773−2783. doi: 10.11829/j.issn.1001-0629.2018-0089
Liu X M, Luo J F, Deng D Z, et al. Effect of nitrogen addition on alpine grassland ecosystems degraded to different extents[J]. Pratacultural Science, 2018, 35(12): 2773−2783. doi: 10.11829/j.issn.1001-0629.2018-0089
|
[5] |
马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态[J]. 生态学报, 2017, 37(15):5091−5101.
Ma W W, Wang H, Li G, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai Wetland[J]. Acta Ecologica Sinica, 2017, 37(15): 5091−5101.
|
[6] |
李璇, 栗忠飞. 滇西北纳帕海高原湿地区域退化草甸土壤有机碳含量特征[J]. 环境科学研究, 2017, 30(7):1079−1088.
Li X, Li Z F. Characteristics of soil organic carbon content of degraded meadows in Napahai Plateau wetland region in northwest Yunnan Province[J]. Research of Environmental Sciences, 2017, 30(7): 1079−1088.
|
[7] |
Kayranli B, Scholz M, Mustafa A, et al. Carbon storage and fluxes within freshwater wetlands: a critical review[J]. Wetlands, 2010, 30(1): 111−124. doi: 10.1007/s13157-009-0003-4
|
[8] |
杨文彬, 耿玉清, 王冬梅. 漓江水陆交错带不同植被类型的土壤酶活性[J]. 生态学报, 2015, 35(14):4604−4612.
Yang W B, Geng Y Q, Wang D M. The activities of soil enzyme under different vegetation types in Li River riparian ecotones[J]. Acta Ecologica Sinica, 2015, 35(14): 4604−4612.
|
[9] |
Khan M S, Sadat S U, Jan A, et al. Impact of transgenic brassica napus harboring the antifungal synthetic chitinase (NiC) gene on rhizosphere microbial diversity and enzyme activities[J]. Frontiers in Plant Science, 2017, 8: 1307. doi: 10.3389/fpls.2017.01307
|
[10] |
叶春, 蒲玉琳, 张世熔, 等. 湿地退化条件下土壤碳氮磷储量与生态化学计量变化特征[J]. 水土保持学报, 2016, 30(6):181−187.
Ye C, Pu Y L, Zhang S R, et al. Ecological stoichiometry characteristics and storage of soil carbon, nitrogen and phosphorus during the wetland degradation process[J]. Journal of Soil and Water Conservation, 2016, 30(6): 181−187.
|
[11] |
夏品华, 喻理飞, 寇永珍, 等. 贵州高原草海湿地土壤有机碳分布特征及其与酶活性的关系[J]. 环境科学学报, 2017, 37(4):1479−1485.
Xia P H, Yu L F, Kou Y Z, et al. Distribution characteristics of soil organic carbon and its relationship with enzyme activity in the Caohai Wetland of the Guizhou Plateau[J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1479−1485.
|
[12] |
吴方涛, 曹生奎, 曹广超, 等. 青海湖高寒藏嵩草湿草甸湿地生态系统CO2通量变化特征[J]. 生态与农村环境学报, 2018, 34(2):124−131. doi: 10.11934/j.issn.1673-4831.2018.02.004
Wu F T, Cao S K, Cao G C, et al. Variation of CO2 flux of alpine wetland ecosystem of Kobresia tibetica wet meadow in Lake Qinghai[J]. Journal of Ecology and Rural Environment, 2018, 34(2): 124−131. doi: 10.11934/j.issn.1673-4831.2018.02.004
|
[13] |
程雷星, 陈克龙, 杨仕兵, 等. 青海湖流域小泊湖湿地植物种间关系研究[J]. 干旱区地理, 2014, 37(5):1005−1011.
Cheng L X, Chen K L, Yang S B, et al. Interspecific relations among the plants at Xiaopohu Wetland of eastern Qinghai Lake[J]. Arid Land Geography, 2014, 37(5): 1005−1011.
|
[14] |
魏俊奇, 李小雁, 蒋志云, 等. 基于EMI的小泊湖退化湿地土壤盐分的空间分布[J]. 水土保持学报, 2016, 30(6):284−288.
Wei J Q, Li X Y, Jiang Z Y, et al. Spatial distribution of soil salinity in a degraded wetland of Xiaopo Lake based on EMI[J]. Journal of Soil and Water Conservation, 2016, 30(6): 284−288.
|
[15] |
Li C, Li Q, Zhao L, et al. Land-use effects on organic and inorganic carbon patterns in the topsoil around Qinghai Lake Basin, Qinghai-Tibetan Plateau[J]. Catena, 2016, 147: 345−355. doi: 10.1016/j.catena.2016.07.040
|
[16] |
杨英, 耿玉清, 黄桂林, 等. 青海小泊湖区沼泽化草甸、草甸和沙地的土壤酶活性[J]. 湿地科学, 2016, 14(1):20−26.
Yang Y, Geng Y Q, Huang G L, et al. Soil enzyme activities in marshy meadow, meadow and sands in Small Mooring Lake, Qinghai[J]. Wetland Science, 2016, 14(1): 20−26.
|
[17] |
邢文黎, 王臣, 熊静, 等. 浦东东滩湿地围垦对土壤碳氮储量及酶活性影响[J]. 生态环境学报, 2018, 27(4):651−657.
Xing W L, Wang C, Xiong J, et al. Effects of reclamation on soil carbon, nitrogen storage and enzyme activity in Dongtan Wetland of Pudong[J]. Ecology and Environmental Sciences, 2018, 27(4): 651−657.
|
[18] |
仲波, 孙庚, 陈冬明, 等. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响[J]. 生态环境学报, 2017, 26(3):392−399.
Zhong B, Sun G, Chen D M, et al. Effects of different restoration measures on soil microbial biomass carbon and nitrogen and soil enzymes in the process of restoration of the desertified grassland in Zoige[J]. Ecology and Environmental Sciences, 2017, 26(3): 392−399.
|
[19] |
赵石磊. 镭同位素示踪青海湖尕海地下水排放通量[D].西宁: 青海师范大学, 2014.
Zhao S L. Radium isotopes traces groundwater discharge flux in the Gahai, Qinghai Lake[D]. Xining: Qinghai Normal University, 2014.
|
[20] |
鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
Lu R K. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000.
|
[21] |
Weil R R, Islam K R, Stine M A, et al. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use[J]. American Journal of Alternative Agriculture, 2003, 18(1): 3−17. doi: 10.1079/AJAA2003003
|
[22] |
Chen C R, Xu Z H, Keay P, et al. Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation[J]. Australian Journal of Soil Research, 2005, 43(4): 515−523. doi: 10.1071/SR04132
|
[23] |
Acosta-Martínez V, Bell C W, Morris B E L, et al. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region[J]. Agriculture Ecosystems & Environment, 2010, 137(3): 231−240.
|
[24] |
Verchot L V, Borelli T. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils[J]. Soil Biology & Biochemistry, 2005, 37(4): 625−633.
|
[25] |
German D P, Weintraub M N, Grandy A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology & Biochemistry, 2011, 43(7): 1387−1397.
|
[26] |
Guenet B, Lenhart K, Leloup J, et al. The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities[J]. Geoderma, 2012, 170: 331−336.
|
[27] |
Grandy A S, Neff J C, Weintraub M N. Carbon structure and enzyme activities in alpine and forest ecosystems[J]. Soil Biology & Biochemistry, 2007, 39(11): 2701−2711.
|
[28] |
Acosta M V, Cruz L, Sotomayor R D, et al. Enzyme activities as affected by soil properties and land use in a tropical watershed[J]. Applied Soil Ecology, 2007, 35(1): 35−45. doi: 10.1016/j.apsoil.2006.05.012
|
[29] |
Yang Y G, Yang Y, Geng Y Q, et al. Effects of different land types on soil enzyme activity in the Qinghai Lake region[J]. Wetlands, 2018, 38(4): 711−721.
|
[30] |
胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化[J]. 草业学报, 2014, 23(3):8−19. doi: 10.11686/cyxb20140302
Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China[J]. Acta Prataculturae Sinica, 2014, 23(3): 8−19. doi: 10.11686/cyxb20140302
|
[31] |
Douterelo I, Goulder R, Lillie M. Enzyme activities and compositional shifts in the community structure of bacterial groups in English wetland soils associated with preservation of organic remains in archaeological sites[J]. International Biodeterioration and Biodegradation, 2011, 65(3): 435−443. doi: 10.1016/j.ibiod.2010.11.017
|
[32] |
靳振江, 曾鸿鹄, 李强, 等. 起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及土壤酶活性比较[J]. 环境科学, 2016, 37(1):335−341.
Jin Z J, Zeng H H, Li Q, et al. Comparisons of microbial numbers, biomasses and soil enzyme activities between paddy field and dryland origins in karst cave wetland[J]. Environmental Science, 2016, 37(1): 335−341.
|
[33] |
毛志刚, 谷孝鸿, 刘金娥, 等. 盐城海滨盐沼湿地及围垦农田的土壤质量演变[J]. 应用生态学报, 2010, 21(8):1986−1992.
Mao Z G, Gu X H, Liu J E, et al. Evolvement of soil quality in salt marshes and reclaimed farmlands in Yancheng coastal wetland[J]. Chinese Journal of Applied Ecology, 2010, 21(8): 1986−1992.
|
[34] |
张鑫, 耿玉清, 徐明, 等. 鄱阳湖湖滨湿地土壤酶活性及影响因素[J]. 北京林业大学学报, 2014, 36(1):34−40.
Zhang X, Geng Y Q, Xu M, et al. Soil enzyme activity and influencing factors in lakeside wetland of Poyang Lake[J]. Journal of Beijing Forestry University, 2014, 36(1): 34−40.
|
[35] |
Cleveland M R, Smithwick E A H, Brooks R P, et al. The wetland disturbance index: links with soil and water nitrate concentrations[J]. Wetlands, 2011, 31(5): 853−863. doi: 10.1007/s13157-011-0200-9
|
[36] |
Song Y, Song C, Yang G, et al. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in northeast China[J]. Environmental Management, 2012, 50(3): 418−426. doi: 10.1007/s00267-012-9890-x
|
[37] |
Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289−297. doi: 10.1016/j.still.2015.07.019
|
[38] |
江淼华, 倪梦颖, 周嘉聪, 等. 增温和降雨减少对杉木幼林土壤酶活性的影响[J]. 生态学杂志, 2018, 37(11):3210−3219.
Jiang M H, Ni M Y, Zhou J C, et al. Effects of warming and precipitation reduction on soil enzyme activity in a young Cunning- hamia lanceolata plantation[J]. Chinese Journal of Ecology, 2018, 37(11): 3210−3219.
|
[39] |
刘俊第, 林威, 王玉哲, 等. 火烧对马尾松林土壤酶活性和有机碳组分的影响[J]. 生态学报, 2018, 38(15):5374−5382.
Liu J D, Lin W, Wang Y Z, et al. Effects of fire on soil enzyme activities and organic carbon fractions in Pinus massoniana forest[J]. Acta Ecologica Sinica, 2018, 38(15): 5374−5382.
|
[40] |
肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23):7625−7633.
Xiao Y, Huang Z G, Wu H T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China[J]. Acta Ecologica Sinica, 2015, 35(23): 7625−7633.
|
[41] |
Liang Q, Gao R T, Xi B D, et al. Long-term effects of irrigation using water from the river receiving treated industrial wastewater on soil organic carbon fractions and enzyme activities[J]. Agricultural Water Management, 2014, 135(4): 100−108.
|
[42] |
Zhang X, Tang Y, Shi Y, et al. Responses of soil hydrolytic enzymes, ammonia-oxidizing bacteria and archaea to nitrogen applications in a temperate grassland in Inner Mongolia[J/OL]. Scientific Reports, 2016, 6: 32791 [2018−06−25]. https://www.nature.com/articles/srep32791.
|
[43] |
Weand M P, Arthur M A, Lovett G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biology & Biochemistry, 2010, 42(12): 2161−2173.
|