• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tang Lin, Guan Huiyuan, Wang Ning, Dai Pengfei. Development of intelligent programming system for numerical controlled mortise and tenon joint[J]. Journal of Beijing Forestry University, 2019, 41(3): 134-142. DOI: 10.13332/j.1000-1522.20180414
Citation: Tang Lin, Guan Huiyuan, Wang Ning, Dai Pengfei. Development of intelligent programming system for numerical controlled mortise and tenon joint[J]. Journal of Beijing Forestry University, 2019, 41(3): 134-142. DOI: 10.13332/j.1000-1522.20180414

Development of intelligent programming system for numerical controlled mortise and tenon joint

More Information
  • Received Date: December 17, 2018
  • Revised Date: January 01, 2019
  • Available Online: March 27, 2019
  • Published Date: February 28, 2019
  • ObjectiveCode generation is the key to realize the numerical controlled (NC) machining of mortise and tenon joint, but the traditional NC programming is difficult, inefficient and over-dependent on CAM software. So it is necessary to develop an intelligent programming system for the numerical controlled mortise and tenon joint.
    MethodFirstly, the joints were classified by group technology, and a parameterized artifact database was established based on the extraction of joints ’ dimension parameters. Intelligent dimension matching was implemented by transforming plentiful process experience and existing research results into functions. Then, the standard NC code template of each joint was set up according to template technology, and these standard NC code templates constituted the module of toolpaths. We used expression algorithm to complete the instantiation of code templates. The change of machining parameters leaded to the change of values in NC code templates, so the NC codes can be programmed automatically, the parameterized and modularized NC programs can be achieved. Based on the principle of post-processing, the compensation of NC code was achieved through the add-in that can calculate the compensation value automatically. At last, on the basis of those researches, an intelligent programming system for numerical controlled mortise and tenon joint was developed by the visualization program VB.
    ResultCombined with the actual authoring of three-way mitered joint part, the feasibility of the system was verified. By checking the dimensions of the processed part, the accuracy of the machining codes generated by the system was also verified.
    ConclusionThis system is simple, stable and efficient. It can simplify the programming process and generate program NC codes automatically. The system is helpful to transform processing of mortise and tenon joint from experience type to knowledge-based type.
  • [1]
    薛坤. 传统家具榫卯结构的性能与设计进化研究[D]. 南京: 南京林业大学, 2013: 44−45.

    Xue K. Analysis on the structural performance of traditional Chinese furniture and the design improvement of mortise and tenon joint[D]. Nanjing: Nanjing Forestry University, 2013: 44−45.
    [2]
    赵凯, 王晓兵, 李耀华. 基于PowerMILL平台智能化数控自动编程技术研究[J]. CAD/CAM与制造业信息化, 2014(9):35−38. doi: 10.3969/j.issn.1671-8186.2014.09.027

    Zhao K, Wang X B, Li Y H. Study on intelligent automatic programming technology based on the PowerMILL[J]. Digital Manufacturing Industry, 2014(9): 35−38. doi: 10.3969/j.issn.1671-8186.2014.09.027
    [3]
    张端, 王双永. 木构件模块化加工参数化设计[J]. 木材加工机械, 2015, 26(5):27−29.

    Zhang R, Wang S Y. Parametric design on modular machining of wood components[J]. Wood Processing Machinery, 2015, 26(5): 27−29.
    [4]
    项前. 可重构的纺织品智能工艺设计与虚拟加工方法及应用研究[D]. 上海: 东华大学, 2011: 16−17.

    Xiang Q. Research and application on method of reconfigurable textile intelligent process planning and virtual machining[D]. Shanghai: Donghua University, 2011: 16−17.
    [5]
    严婕, 林彬彬, 朱礼智, 等. 数控加工机床与加工中心在家具制造业中的应用[J]. 林业机械与木工设备, 2014, 24(6):56−57. doi: 10.3969/j.issn.2095-2953.2014.06.023

    Yan J, Lin B B, Zhu L Z, et al. Application of CNC machining lathes and machining centers in the furniture manufacturing industry[J]. Forestry Machinery & Woodworking Equipment, 2014, 24(6): 56−57. doi: 10.3969/j.issn.2095-2953.2014.06.023
    [6]
    马岩. 我国数控木工机械的发展现状及自动化技术的研发方向[J]. 林业机械与木工设备, 2012, 40(1):4−9. doi: 10.3969/j.issn.2095-2953.2012.01.001

    Ma Y. Development status of China ’s CNC woodworking machinery and the development direction of automation technology[J]. Forestry Machinery & Woodworking Equipment, 2012, 40(1): 4−9. doi: 10.3969/j.issn.2095-2953.2012.01.001
    [7]
    胡文刚, 白珏, 关惠元. 一种速生材榫接合节点增强方法[J]. 北京林业大学学报, 2017, 39(4):101−107.

    Hu W G, Bai J, Guan H Y. Investigation on a method of increasing mortise and tenon joint strength of a fast growing wood[J]. Journal of Beijing Forestry University, 2017, 39(4): 101−107.
    [8]
    张远群, 王文宁. 小径材家具榫卯结构的强度研究[J]. 林产工业, 2013, 43(4):24−27. doi: 10.3969/j.issn.1001-5299.2013.04.006

    Zhang Y Q, Wang W N. Strength investigation of mortise and tenon joint in small-diameter logs furniture[J]. China Forest Products Industry, 2013, 43(4): 24−27. doi: 10.3969/j.issn.1001-5299.2013.04.006
    [9]
    Efe H, Zhang J L, Erdil Y Z, et al. Moment capacity of traditional and alternative T-type end to side grain furniture joints[J]. Forest Products Journal, 2005, 55(5): 45−52.
    [10]
    钟世禄, 关惠元. 椭圆榫过盈配合量与木材密度的关系[J]. 林业科技开发, 2007(2):57−59. doi: 10.3969/j.issn.1000-8101.2007.02.018

    Zhong S L, Guan H Y. Relationship between optmial value of interference fit and wood density in oval tenon joint[J]. Journal of Forestry Engineering, 2007(2): 57−59. doi: 10.3969/j.issn.1000-8101.2007.02.018
    [11]
    蒋占四. 基于Modelica模型的参数优化及推理求解研究[D]. 武汉: 华中科技大学, 2008.

    Jiang Z S. Parameter optimization and inference solving for models based on Modelica[D]. Wuhan: Huazhong University of Science and Technology, 2008.
    [12]
    曹卫东, 阎春平, 郭奉民. 基于成组技术和标准模板的滚齿CNC自动编程[J]. 计算机集成制造系统, 2015, 21(1):195−203.

    Cao W D, Yan C P, Guo F M. CNC gear bobbing automatic programming based on group technology and standard template[J]. Computer Integrated Manufacturing Systems, 2015, 21(1): 195−203.
    [13]
    Sakamoto S, Inasaki I. Analysis of generating motion for five-axis machining centers[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1993, 59: 1553−1559.
    [14]
    Cheng H Y, She C H. Studies on the combination of the forward and reverse postprocessor for multi-axis machine tools[C]//Proceeding of the institution of mechanical engineers, part B. England: IME, 2002: 77.
    [15]
    郑飂默. 基于通用运动模型的五轴机床后置处理[J]. 计算机集成制造系统, 2010, 16(5):1006−1011.

    Zheng L M. Postprocessor based on generalized kinematics model of five-axis machine tools[J]. Computer Integrated Manufacturing Systems, 2010, 16(5): 1006−1011.
    [16]
    李庄. 五轴机床运动学通用建模理论研究及应用[D]. 成都: 西南交通大学, 2013.

    Li Z. Kinematic generic modeling theory for five-axis machine tool[D]. Chengdu: Southwest Jiaotong University, 2013.
  • Cited by

    Periodical cited type(6)

    1. 刘芮,王振兴,张文静,张生德,张清华. 储热材料研究现状及相变储热研究进展. 电机与控制应用. 2024(02): 44-60 .
    2. 陈松武,黄海英,禤示青,刘晓玲,陈桂丹,王浏浏. “双碳”背景下木材加工产业的发展重点与方向的研讨. 浙江林业科技. 2024(04): 112-116 .
    3. 韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 . 本站查看
    4. 庞群艳,胡纲正,李文轩,贺磊,邱竑韫,黄慧,何文. 纳米铜热处理竹材制备及其防霉性能. 林业工程学报. 2024(06): 37-43 .
    5. 鲍伟,王胜捷,蒲万兴,宋子豪. 复合相变材料导热性能与套管式相变储热单元翅片结构优化. 农业工程学报. 2024(23): 303-312 .
    6. 何林韩,刘晓玲,陈松武,罗玉芬,王浏浏. 木质基复合相变材料的研究现状与发展趋势. 化工新型材料. 2023(S2): 525-531 .

    Other cited types(1)

Catalog

    Article views (5758) PDF downloads (46) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return