Citation: | Yu Jiali, Wang Chu, Gong Xintong, Li Jitang, Liu Guifeng, Jiang Jing. Selection of elite transgenic lines of BpGH3.5 in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(9): 81-89. DOI: 10.13332/j.1000-1522.20180434 |
[1] |
王成, 滕文华, 李开隆, 等. 白桦5 × 5双列杂交子代生长性状的遗传效应分析[J]. 北京林业大学学报, 2011, 33(3):14−20.
Wang C, Teng W H, Li K L, et al. Analysis of genetic effects on growth traits in a 5 × 5 diallel cross of Betula platyphylla[J]. Journal of Beijing Forestry University, 2011, 33(3): 14−20.
|
[2] |
Mu H Z, Liu Z J, Lin L, et al. Transcriptomic analysis of phenotypic changes in birch (Betula platyphylla) autotetraploids[J]. International Journal of Molecular Sciences, 2012, 13: 13012−13029. doi: 10.3390/ijms131013012
|
[3] |
姜静, 杨光, 祝泽兵, 等. 白桦强化种子园优良家系选择[J]. 东北林业大学学报, 2011, 39(1):1−4. doi: 10.3969/j.issn.1000-5382.2011.01.001
Jiang J, Yang G, Zhu Z B, et al. Family selectionfrom intensive seed orchard of Betula platyphylla[J]. Journal of Northeast Forestry University, 2011, 39(1): 1−4. doi: 10.3969/j.issn.1000-5382.2011.01.001
|
[4] |
刘超逸, 刘桂丰, 方功桂, 等. 四倍体白桦木材纤维性状比较及优良母树选择[J]. 北京林业大学学报, 2017, 39(2):9−15.
Liu C Y, Liu G F, Fang G G, et al. Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees[J]. Journal of Beijing Forestry University, 2017, 39(2): 9−15.
|
[5] |
刘宇, 徐焕文, 张广波, 等. 白桦半同胞子代多点生长性状测定及优良家系选择[J]. 北京林业大学学报, 2017, 39(3):7−15.
Liu Y, Xu H W, Zhang G B, et al. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(3): 7−15.
|
[6] |
徐焕文, 刘宇, 李志新, 等. 5年生白桦杂种子代多点稳定性分析及优良家系选择[J]. 北京林业大学学报, 2015, 37(12):24−31.
Xu H W, Liu Y, Li Z X, et al. Analysis of the stability and superiority of five-year-old birch crossbreed families based on a multi-site test[J]. Journal of Beijing Forestry University, 2015, 37(12): 24−31.
|
[7] |
Huang H J, Wang S, Jiang J, et al. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla×B. pendula[J]. Physiol Plant, 2014, 151: 495−506. doi: 10.1111/ppl.12123
|
[8] |
詹亚光, 王玉成, 王志英, 等. 白桦的遗传转化及转基因植株的抗虫性[J]. 植物生理与分子生物学学报, 2003, 29(5):380−386.
Zhan Y G, Wang Y C, Wang Z Y, et al. Genetic transformation of Betula platyphylla and Insect resistance of the transgenic plants[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(5): 380−386.
|
[9] |
李园园, 杨光, 韦睿, 等. 转 TabZIP 基因白桦的获得及耐盐性分析[J]. 南京林业大学学报(自然科学版), 2013, 37(5):6−12.
Li Y Y, Yang G, Wei R, et al. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(5): 6−12.
|
[10] |
Zhang W B, Wei R, Chen S, et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis[J]. Physiologia Plantarum, 2015, 154: 283−296. doi: 10.1111/ppl.12306
|
[11] |
陈继英, 刘超逸, 王朔, 等. 白桦BpTOPP1基因功能[J]. 东北林业大学学报, 2018, 46(8):13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003
Chen J Y, Liu C Y, Wang S, et al. A preliminary study on Function of BpTOPP 1 Gene in Betulla platyphylla × B.pendula[J]. Journal of Northeast Forestry University, 2018, 46(8): 13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003
|
[12] |
范志勇, 姜晶, 王芳, 等. 转BpCHS基因过量表达白桦叶片和韧皮部色素含量及植株表型分析[J]. 东北林业大学学报, 2018, 46(6):8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
Fan Z Y, Jiang J, Wang F, et al. Overexpression of BpCHS confers changes of pigment content in leaves and phloem and other phenotypic traits in transgenic birch[J]. Journal of Northeast Forestry University, 2018, 46(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
|
[13] |
Yang G, Chen S, Wang S, et al. BpGH3.5, an early auxinresponse gene, regulates root elongation in Betula platyphylla × Betula pendula[J]. Plant Cell Tissue and Organ Culture, 2015, 120(1): 239−250. doi: 10.1007/s11240-014-0599-9
|
[14] |
Guilfoyle T J, Ulmasov T, Hagen G. The ARF family of transcription factors and their role in plant hormone-responsive transcription[J]. Cellular and Molecular Life Sciences, 1998, 54(7): 619−627. doi: 10.1007/s000180050190
|
[15] |
Liscum E, Reed J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 2002, 49(3−4): 387−400.
|
[16] |
黎颖, 左开井, 唐克轩. 植物 GH3 基因家族的功能研究概况[J]. 植物学报, 2008, 25(5):507−515. doi: 10.3969/j.issn.1674-3466.2008.05.001
Li Y, Zuo K J, Tang K X. A survey of functional studies of the GH3 gene family in plants[J]. Chinese Bulletin of Botany, 2008, 25(5): 507−515. doi: 10.3969/j.issn.1674-3466.2008.05.001
|
[17] |
Mellor N, Band LR, Pěnčík A, et al. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 11022−11027. doi: 10.1073/pnas.1604458113
|
[18] |
Takase T, Nakazawa M, Ishikawa A, et al. ydk1-D, an auxinresponsive GH3 mutant that is involved in hypocotyl and root elongation[J]. The Plant Journal, 2004, 37: 471−483. doi: 10.1046/j.1365-313X.2003.01973.x
|
[19] |
Nakazawa M, Yabe N, Ichikawa T, et al. DFL1, an auxinresponsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length[J]. The Plant Journal, 2001, 25: 213−221. doi: 10.1046/j.1365-313x.2001.00957.x
|
[20] |
刘晓东, 李月, 王若仲, 等. 过表达 GH3-5 提高拟南芥抗旱的分子机制[J]. 南京农业大学学报, 2016, 39(4):557−562. doi: 10.7685/jnau.201604019
Liu X D, Li Y, Wang R Z, et al. Molecular mechanism of drought tolerance conferred by overexpression of GH3-5[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 557−562. doi: 10.7685/jnau.201604019
|
[21] |
刘晓东, 王若仲, 焦彬彬, 等. 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应[J]. 植物学报, 2016, 51(5):586−593. doi: 10.11983/CBB15223
Liu X D, Wang R Z, Jiao B B, et al. Indole acetic acid-amido synthetase GH3-6 negatively regulates response to drought and salt in Arabidopsis[J]. Bulletin of Botany, 2016, 51(5): 586−593. doi: 10.11983/CBB15223
|
[22] |
Zhang Z, Li Q, Li Z, et al. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction[J]. Plant Physiology, 2007, 145(2): 450−464. doi: 10.1104/pp.107.106021
|
[23] |
杨光, 韦睿, 王姗, 等. 转基因白桦试管苗去琼脂生根培养及高效移栽技术[J]. 林业实用技术, 2011(4):33−34.
Yang G, Wei R, Wang S, et al. Rooting culture without agar and efficient transplanting technique of transgenic plantlet in birch[J]. Practical Forestry Technology, 2011(4): 33−34.
|
[24] |
Yang G, Chen S, Jiang J. Transcriptome analysis reveals the role of BpGH3.5 in root elongation of Betula platyphylla × Betula pendula[J]. Plant Cell Tiss Organ Cult, 2015, 121(3): 605−617. doi: 10.1007/s11240-015-0731-5
|
[25] |
Zhang S W, Li C H, Zhang Y C, et al. Altered architecture and enhanceddrought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation[J]. Plantphysiology, 2009, 151: 1889−1901.
|
[26] |
Du H, Wu N, Fu J, et al. A GH3 family member, OsGH3-2, modulates auxin andabscisic acid levels and differentially affects drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(18): 6467−6480. doi: 10.1093/jxb/ers300
|
[27] |
Ding X, Cao Y, Huang L, et al. Activation of the indole-3-acetic acid-amidosynthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basalimmunity in rice[J]. The Plant Cell, 2008, 20(1): 228−240. doi: 10.1105/tpc.107.055657
|
[28] |
Tam Y Y, Epstein E, Normanly J. Characterization of auxin conjugates in Arabidopsis, low steady-statelevels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose[J]. Plant Physiology, 2000, 123: 589−596. doi: 10.1104/pp.123.2.589
|
[29] |
Campanella J J, Ludwig-Mueller J, Bakllamaja V, et al. ILR1 and sILR1 IAA amidohydrolase homologs differ in expression pattern and substrate specificity[J]. Plant Growth Regulation, 2003, 41: 215−223. doi: 10.1023/B:GROW.0000007501.27878.aa
|
[30] |
陈敏. 超量表达生长素早期响应基因CsGH3增强柑橘溃疡病抗性[D]. 重庆: 西南大学, 2017.
Chen M, Overexpressing early auxin-responsive gene CsGH3 enhances canker resistance in citrus[D]. Chongqing: Southwest University, 2017.
|
[31] |
Kwon-Chung K J. A new genus, filobasidiella, the perfect state of cryptococcus neoformans[J]. Mycological, 1975, 67(6): 1197−1200. doi: 10.1080/00275514.1975.12019866
|
[32] |
谢兆辉. 天然反义转录物及其调控基因的表达机制[J]. 遗传, 2010, 32(2):122−128. doi: 10.3760/cma.j.issn.1673-4386.2010.02.014
Xie Z H. Natural antisense transcript and its mechanism of gene regulation[J]. Hereditas(Beijing), 2010, 32(2): 122−128. doi: 10.3760/cma.j.issn.1673-4386.2010.02.014
|
[33] |
Chen J J, Sun M, Hurst L D, et al. Genome-wide analysis of coordinate expression and evolution of human cis-eneoded sense-antisense transeripts[J]. Trende Genet, 2005, 21(6): 326−329. doi: 10.1016/j.tig.2005.04.006
|
[34] |
李魏, 谭晓风, 陈鸿鹏. 植物肉桂酰辅酶A还原酶基因的结构功能及应用潜力[J]. 经济林研究, 2009, 27(1):7−12. doi: 10.3969/j.issn.1003-8981.2009.01.002
Li W, Tan X F, Chen H P. Structure, function and application potential of cinnamoyl-CoA reductase (CCR) gene in plant[J]. Nonwood Forest Research, 2009, 27(1): 7−12. doi: 10.3969/j.issn.1003-8981.2009.01.002
|
[35] |
Leple J, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. Plant Cell, 2007, 19(11): 3669−3691. doi: 10.1105/tpc.107.054148
|
[36] |
张嫚嫚, 刘宝光, 顾宸瑞, 等. 转BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择[J]. 北京林业大学学报, 2019, 41(6):86−95.
Zhang M M, Liu B G, Gu C R, et al. Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines[J]. Journal of Beijing Forestry University, 2019, 41(6): 86−95.
|