• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Jiali, Wang Chu, Gong Xintong, Li Jitang, Liu Guifeng, Jiang Jing. Selection of elite transgenic lines of BpGH3.5 in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(9): 81-89. DOI: 10.13332/j.1000-1522.20180434
Citation: Yu Jiali, Wang Chu, Gong Xintong, Li Jitang, Liu Guifeng, Jiang Jing. Selection of elite transgenic lines of BpGH3.5 in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(9): 81-89. DOI: 10.13332/j.1000-1522.20180434

Selection of elite transgenic lines of BpGH3.5 in Betula platyphylla

More Information
  • Received Date: December 24, 2018
  • Revised Date: March 19, 2019
  • Available Online: September 05, 2019
  • Published Date: August 31, 2019
  • ObjectiveThe auxinamide synthase gene family (GH3s) is a typical auxin primary/early response gene. Most family genes can regulate growth and development by regulating the concentration of free IAA in plants. Therefore, genetic engineering was used to introduce the BpGH3.5 sense and antisense strand into the Betula platyphylla genome in order to obtain fast-growing transgenic Betula platyphylla variety.
    MethodIn total, 54 sense, antisense and control (WT) transgenic lines of BpGH3.5 were used in the study. Tree height, DBH and volume were measured. The genetic stability and relative expression of the target gene of five sense and antisense lines were detected by PCR and qRT-PCR, respectively. The free IAA content was determined by enzyme-linked immunosorbent assay.
    ResultPCR showed that the nptII exogenous genes in the transgenic lines were all positive. qRT-PCR analysis showed that the BpGH3.5 gene was significantly higher in the five sense lines than in the WT line. In contrast, the endogenous BpGH3.5 was significantly down-regulated in the five antisense lines. The genome interfered the expression of BpGH3.5 in Betula platyphylla. The content of endogenous free IAA showed that the IAA content of the transgenic BpGH3.5 sense lines was significantly lower than that of the WT line. IAA content of the five antisense lines was significantly higher than that of the WT line (P< 0.01), and their average IAA content was 52.26% higher than the WT line. The differences in tree height, DBH and volume growth of 7-year-old transgenic BpGH3.5 Betula platyphylla were significant among lines (P< 0.01). Height, DBH and volume of transgenic lines were higher than the population mean, the antisense lines accounted for above 80%. In conclusion, transgenic BpGH3.5 antisense lines of Betula platyphylla can inhibit the expression of BpGH3.5, and reduce the ability of amino acid production resulting release more free IAA to promote the growth of Betula platyphylla. Ten fast growing trees were selected from antisense lines using principal component analysis. The average tree height, DBH and volume of these lines were 8.55%, 19.28%, and 50.42% higher than the population mean, respectively. The average genetic gain of tree volume was 36.3%. Results of selected lines provide useful information for future release transgenic BpGH3.5 lines in Betula platyphylla.
    ConclusionTransgenic BpGH3.5 antisense lines of Betula platyphylla can inhibit the expression of BpGH3.5, and release more free IAA to promote the growth of Betula platyphylla. Ten fast growing trees were selected from antisense lines using principal component analysis.
  • [1]
    王成, 滕文华, 李开隆, 等. 白桦5 × 5双列杂交子代生长性状的遗传效应分析[J]. 北京林业大学学报, 2011, 33(3):14−20.

    Wang C, Teng W H, Li K L, et al. Analysis of genetic effects on growth traits in a 5 × 5 diallel cross of Betula platyphylla[J]. Journal of Beijing Forestry University, 2011, 33(3): 14−20.
    [2]
    Mu H Z, Liu Z J, Lin L, et al. Transcriptomic analysis of phenotypic changes in birch (Betula platyphylla) autotetraploids[J]. International Journal of Molecular Sciences, 2012, 13: 13012−13029. doi: 10.3390/ijms131013012
    [3]
    姜静, 杨光, 祝泽兵, 等. 白桦强化种子园优良家系选择[J]. 东北林业大学学报, 2011, 39(1):1−4. doi: 10.3969/j.issn.1000-5382.2011.01.001

    Jiang J, Yang G, Zhu Z B, et al. Family selectionfrom intensive seed orchard of Betula platyphylla[J]. Journal of Northeast Forestry University, 2011, 39(1): 1−4. doi: 10.3969/j.issn.1000-5382.2011.01.001
    [4]
    刘超逸, 刘桂丰, 方功桂, 等. 四倍体白桦木材纤维性状比较及优良母树选择[J]. 北京林业大学学报, 2017, 39(2):9−15.

    Liu C Y, Liu G F, Fang G G, et al. Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees[J]. Journal of Beijing Forestry University, 2017, 39(2): 9−15.
    [5]
    刘宇, 徐焕文, 张广波, 等. 白桦半同胞子代多点生长性状测定及优良家系选择[J]. 北京林业大学学报, 2017, 39(3):7−15.

    Liu Y, Xu H W, Zhang G B, et al. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(3): 7−15.
    [6]
    徐焕文, 刘宇, 李志新, 等. 5年生白桦杂种子代多点稳定性分析及优良家系选择[J]. 北京林业大学学报, 2015, 37(12):24−31.

    Xu H W, Liu Y, Li Z X, et al. Analysis of the stability and superiority of five-year-old birch crossbreed families based on a multi-site test[J]. Journal of Beijing Forestry University, 2015, 37(12): 24−31.
    [7]
    Huang H J, Wang S, Jiang J, et al. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla×B. pendula[J]. Physiol Plant, 2014, 151: 495−506. doi: 10.1111/ppl.12123
    [8]
    詹亚光, 王玉成, 王志英, 等. 白桦的遗传转化及转基因植株的抗虫性[J]. 植物生理与分子生物学学报, 2003, 29(5):380−386.

    Zhan Y G, Wang Y C, Wang Z Y, et al. Genetic transformation of Betula platyphylla and Insect resistance of the transgenic plants[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(5): 380−386.
    [9]
    李园园, 杨光, 韦睿, 等. 转 TabZIP 基因白桦的获得及耐盐性分析[J]. 南京林业大学学报(自然科学版), 2013, 37(5):6−12.

    Li Y Y, Yang G, Wei R, et al. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(5): 6−12.
    [10]
    Zhang W B, Wei R, Chen S, et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis[J]. Physiologia Plantarum, 2015, 154: 283−296. doi: 10.1111/ppl.12306
    [11]
    陈继英, 刘超逸, 王朔, 等. 白桦BpTOPP1基因功能[J]. 东北林业大学学报, 2018, 46(8):13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003

    Chen J Y, Liu C Y, Wang S, et al. A preliminary study on Function of BpTOPP 1 Gene in Betulla platyphylla × B.pendula[J]. Journal of Northeast Forestry University, 2018, 46(8): 13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003
    [12]
    范志勇, 姜晶, 王芳, 等. 转BpCHS基因过量表达白桦叶片和韧皮部色素含量及植株表型分析[J]. 东北林业大学学报, 2018, 46(6):8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002

    Fan Z Y, Jiang J, Wang F, et al. Overexpression of BpCHS confers changes of pigment content in leaves and phloem and other phenotypic traits in transgenic birch[J]. Journal of Northeast Forestry University, 2018, 46(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
    [13]
    Yang G, Chen S, Wang S, et al. BpGH3.5, an early auxinresponse gene, regulates root elongation in Betula platyphylla × Betula pendula[J]. Plant Cell Tissue and Organ Culture, 2015, 120(1): 239−250. doi: 10.1007/s11240-014-0599-9
    [14]
    Guilfoyle T J, Ulmasov T, Hagen G. The ARF family of transcription factors and their role in plant hormone-responsive transcription[J]. Cellular and Molecular Life Sciences, 1998, 54(7): 619−627. doi: 10.1007/s000180050190
    [15]
    Liscum E, Reed J W. Genetics of Aux/IAA and ARF action in plant growth and development[J]. Plant Molecular Biology, 2002, 49(3−4): 387−400.
    [16]
    黎颖, 左开井, 唐克轩. 植物 GH3 基因家族的功能研究概况[J]. 植物学报, 2008, 25(5):507−515. doi: 10.3969/j.issn.1674-3466.2008.05.001

    Li Y, Zuo K J, Tang K X. A survey of functional studies of the GH3 gene family in plants[J]. Chinese Bulletin of Botany, 2008, 25(5): 507−515. doi: 10.3969/j.issn.1674-3466.2008.05.001
    [17]
    Mellor N, Band LR, Pěnčík A, et al. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(39): 11022−11027. doi: 10.1073/pnas.1604458113
    [18]
    Takase T, Nakazawa M, Ishikawa A, et al. ydk1-D, an auxinresponsive GH3 mutant that is involved in hypocotyl and root elongation[J]. The Plant Journal, 2004, 37: 471−483. doi: 10.1046/j.1365-313X.2003.01973.x
    [19]
    Nakazawa M, Yabe N, Ichikawa T, et al. DFL1, an auxinresponsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length[J]. The Plant Journal, 2001, 25: 213−221. doi: 10.1046/j.1365-313x.2001.00957.x
    [20]
    刘晓东, 李月, 王若仲, 等. 过表达 GH3-5 提高拟南芥抗旱的分子机制[J]. 南京农业大学学报, 2016, 39(4):557−562. doi: 10.7685/jnau.201604019

    Liu X D, Li Y, Wang R Z, et al. Molecular mechanism of drought tolerance conferred by overexpression of GH3-5[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 557−562. doi: 10.7685/jnau.201604019
    [21]
    刘晓东, 王若仲, 焦彬彬, 等. 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应[J]. 植物学报, 2016, 51(5):586−593. doi: 10.11983/CBB15223

    Liu X D, Wang R Z, Jiao B B, et al. Indole acetic acid-amido synthetase GH3-6 negatively regulates response to drought and salt in Arabidopsis[J]. Bulletin of Botany, 2016, 51(5): 586−593. doi: 10.11983/CBB15223
    [22]
    Zhang Z, Li Q, Li Z, et al. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction[J]. Plant Physiology, 2007, 145(2): 450−464. doi: 10.1104/pp.107.106021
    [23]
    杨光, 韦睿, 王姗, 等. 转基因白桦试管苗去琼脂生根培养及高效移栽技术[J]. 林业实用技术, 2011(4):33−34.

    Yang G, Wei R, Wang S, et al. Rooting culture without agar and efficient transplanting technique of transgenic plantlet in birch[J]. Practical Forestry Technology, 2011(4): 33−34.
    [24]
    Yang G, Chen S, Jiang J. Transcriptome analysis reveals the role of BpGH3.5 in root elongation of Betula platyphylla × Betula pendula[J]. Plant Cell Tiss Organ Cult, 2015, 121(3): 605−617. doi: 10.1007/s11240-015-0731-5
    [25]
    Zhang S W, Li C H, Zhang Y C, et al. Altered architecture and enhanceddrought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation[J]. Plantphysiology, 2009, 151: 1889−1901.
    [26]
    Du H, Wu N, Fu J, et al. A GH3 family member, OsGH3-2, modulates auxin andabscisic acid levels and differentially affects drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(18): 6467−6480. doi: 10.1093/jxb/ers300
    [27]
    Ding X, Cao Y, Huang L, et al. Activation of the indole-3-acetic acid-amidosynthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basalimmunity in rice[J]. The Plant Cell, 2008, 20(1): 228−240. doi: 10.1105/tpc.107.055657
    [28]
    Tam Y Y, Epstein E, Normanly J. Characterization of auxin conjugates in Arabidopsis, low steady-statelevels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose[J]. Plant Physiology, 2000, 123: 589−596. doi: 10.1104/pp.123.2.589
    [29]
    Campanella J J, Ludwig-Mueller J, Bakllamaja V, et al. ILR1 and sILR1 IAA amidohydrolase homologs differ in expression pattern and substrate specificity[J]. Plant Growth Regulation, 2003, 41: 215−223. doi: 10.1023/B:GROW.0000007501.27878.aa
    [30]
    陈敏. 超量表达生长素早期响应基因CsGH3增强柑橘溃疡病抗性[D]. 重庆: 西南大学, 2017.

    Chen M, Overexpressing early auxin-responsive gene CsGH3 enhances canker resistance in citrus[D]. Chongqing: Southwest University, 2017.
    [31]
    Kwon-Chung K J. A new genus, filobasidiella, the perfect state of cryptococcus neoformans[J]. Mycological, 1975, 67(6): 1197−1200. doi: 10.1080/00275514.1975.12019866
    [32]
    谢兆辉. 天然反义转录物及其调控基因的表达机制[J]. 遗传, 2010, 32(2):122−128. doi: 10.3760/cma.j.issn.1673-4386.2010.02.014

    Xie Z H. Natural antisense transcript and its mechanism of gene regulation[J]. Hereditas(Beijing), 2010, 32(2): 122−128. doi: 10.3760/cma.j.issn.1673-4386.2010.02.014
    [33]
    Chen J J, Sun M, Hurst L D, et al. Genome-wide analysis of coordinate expression and evolution of human cis-eneoded sense-antisense transeripts[J]. Trende Genet, 2005, 21(6): 326−329. doi: 10.1016/j.tig.2005.04.006
    [34]
    李魏, 谭晓风, 陈鸿鹏. 植物肉桂酰辅酶A还原酶基因的结构功能及应用潜力[J]. 经济林研究, 2009, 27(1):7−12. doi: 10.3969/j.issn.1003-8981.2009.01.002

    Li W, Tan X F, Chen H P. Structure, function and application potential of cinnamoyl-CoA reductase (CCR) gene in plant[J]. Nonwood Forest Research, 2009, 27(1): 7−12. doi: 10.3969/j.issn.1003-8981.2009.01.002
    [35]
    Leple J, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure[J]. Plant Cell, 2007, 19(11): 3669−3691. doi: 10.1105/tpc.107.054148
    [36]
    张嫚嫚, 刘宝光, 顾宸瑞, 等. 转BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择[J]. 北京林业大学学报, 2019, 41(6):86−95.

    Zhang M M, Liu B G, Gu C R, et al. Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines[J]. Journal of Beijing Forestry University, 2019, 41(6): 86−95.
  • Related Articles

    [1]Wang Yin, Yao Ruiling, Chen Zhenhua, Gan Deyu, Peng Jian. Preliminary study on the interaction effect between genotypes and environment of growth traits in Pinus massoniana clones[J]. Journal of Beijing Forestry University, 2023, 45(5): 47-56. DOI: 10.12171/j.1000-1522.20210312
    [2]Chang Xiaochao, Liu Yong, Li Jinyu, Li Shian, Sun Minghui, Wan Fangfang, Zhang Jin, Song Xiehai. Effects of different nitrogen forms and ratios on growth of male Populus tomentosa seedlings[J]. Journal of Beijing Forestry University, 2018, 40(9): 63-71. DOI: 10.13332/j.1000-1522.20180178
    [3]LI Chun-xu, LIU Gui-feng, LIU Yu, XU Huan-wen, JIANG Jing. Preliminary seedling selection of superior clones of pot culture Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(2): 16-23. DOI: 10.13332/j.1000-1522.20160064
    [4]YANG Chuan-bao, YAO Jun-xiu, LI Shan-wen, NI Hui-jing, LIU Yuan-qian, ZHANG You-hui, LI Ji-hong. Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2016, 38(5): 58-66. DOI: 10.13332/j.1000-1522.20150503
    [5]JIANG Li-chun, JIANG Yu-hang.. Modeling effects of crown characteristics on stem taper of dahurian larch using mixed model.[J]. Journal of Beijing Forestry University, 2014, 36(2): 10-14.
    [6]WANG Li-peng, LI Ji-yue, WANG Jun-hui, HE Qian, SU Yan. Effects of exponential fertilization on seedling growth and nitrogen uptake and utilization efficiency of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(6): 55-62.
    [7]NIE Xiu-qin, LI Yun, CHEN Ming-teng, NIE Ying, LIU Feng-yuan. Comparing trigonometric variableform taper function with generalized Brink stem profile function[J]. Journal of Beijing Forestry University, 2012, 34(5): 120-127.
    [8]LI Yan-xia, ZHANG Han-guo, DENG Ji-feng, ZHANG Lei. Correlations among wood density, wood physical mechanics index and growth trait, and selection of elite families for production of building products in Larix olgensis[J]. Journal of Beijing Forestry University, 2012, 34(5): 6-14.
    [9]QU Chao-qi, MAN Xiu-ling, DUAN Liang-liang. Comprehensive evaluation on the effects of different biological agents on survival rate, growth, physiological and biochemical indexes of desert plant Yucca brevifolia seedlings[J]. Journal of Beijing Forestry University, 2012, 34(4): 67-72.
    [10]QUAN Hai.. Evaluating index system and calculating methods for comprehensive benefit of soil and water conservation ecological construction.[J]. Journal of Beijing Forestry University, 2009, 31(3): 64-70.
  • Cited by

    Periodical cited type(11)

    1. 李有清,赵林峰,伍威,陈敏,高建亮. 红心杉不同无性系性状早期变异与综合选择. 中南林业科技大学学报. 2024(07): 21-28 .
    2. 赵阳,杨超伟,冯延芝,乔杰,王保平,周海江. 亚热带低山丘陵区桐茶复合经营对茶叶品质的影响. 林业科技通讯. 2023(05): 46-51 .
    3. 蔡卫佳,王昊,刘威,罗桂杰,刘旭,王红玲. 泡桐无性系早期生长与干形综合选择. 林业与环境科学. 2023(05): 20-26 .
    4. 杜庆松,刘幸红,黄雯佳,王金国,陈新书,王开强,翟文征,郭庆,许景亮. 泡桐无性系苗期试验研究. 山东林业科技. 2022(03): 65-68+56 .
    5. 庞宏东,李玲,杨代贵,唐万鹏. 南方丘陵山地泡桐人工林立地类型划分与质量评价. 中南林业科技大学学报. 2022(08): 40-47 .
    6. 庞宏东,李玲,崔鸿侠,曾祥福,唐万鹏. 不同立地因子对泡桐人工林生长量及土壤理化性质的影响. 东北林业大学学报. 2021(07): 28-32 .
    7. 李玲,庞宏东,唐万鹏,崔鸿侠,杨代贵,张荣洋,朱波涛,沙轼. 品种、密度及造林模式对南方低山丘陵区泡桐幼林生长的影响. 湖北林业科技. 2020(05): 1-4+9 .
    8. 孙延稳,袁全国. 泡桐优良无性系筛选及育苗技术研究. 现代农业科技. 2019(09): 118-119 .
    9. 李文杨,王娟,赵振利,范国强. 泡桐高密度分子遗传图谱的构建. 中南林业科技大学学报. 2019(09): 80-85 .
    10. 凌娟娟,肖遥,杨桂娟,马建伟,赵秋玲,贠慧玲,王军辉,麻文俊. 灰楸无性系生长和形质性状变异与选择. 林业科学研究. 2019(05): 149-156 .
    11. 庞宏东,唐万鹏,李玲,杨代贵,范俊,张云超,曾祥福. 泡桐品种生长量差异及不同种植密度对泡桐幼林生长影响的研究. 湖北林业科技. 2019(06): 1-3 .

    Other cited types(0)

Catalog

    Article views (1982) PDF downloads (41) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return