• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Shenglin, He Xiao, Cao Lei, Li Haikui, Xu Qihu, Liu Xiaotong. Analysis of the factors affecting trunk density and wood density of three native tree species in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(6): 44-54. DOI: 10.13332/j.1000-1522.20180445
Citation: Xu Shenglin, He Xiao, Cao Lei, Li Haikui, Xu Qihu, Liu Xiaotong. Analysis of the factors affecting trunk density and wood density of three native tree species in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(6): 44-54. DOI: 10.13332/j.1000-1522.20180445

Analysis of the factors affecting trunk density and wood density of three native tree species in Guangdong Province of southern China

More Information
  • Received Date: December 28, 2018
  • Revised Date: March 13, 2019
  • Available Online: June 12, 2019
  • Published Date: May 31, 2019
  • Objective The effects of different factors on trunk density and wood density were analyzed to provide data support for tree breeding and carbon sequestration measurement.
    Method Based on the measured data of trunk density and wood density of Cinnamomum camphora, Schima superba and Liquidambar formosana, which are three native tree species in Guangdong Province of southern China, using multifactor analysis of variance with covariate and no interaction to screen out factors affecting trunk density and wood density from 30 factors (11 qualitative factors and 19 quantitative factors) of five categories, and then the boosted regression trees(BRT) was used to analyze the influence of different factors on trunk density and wood density of three species.
    Result (1) Vegetation type, height under branch, DBH, vegetation coverage and the crown width from east to west are the main factors affecting trunk density of Cinnamomum camphora. City and vegetation type are the main factors affecting trunk density of Schima superba. Slope aspect, altitude and average height are the main factors affecting trunk density of Liquidambar formosana. The main factors affecting trunk density of three tree species are different and there was no common main factors in them. (2) The main factors affecting wood density of Cinnamomum camphora are height under branch, vegetation type, altitude, vegetation coverage, average height, shrub coverage, age, DBH, forest category and soil thickness. The main factors affecting wood density of Schima superba are age, herb coverage, height under branch, average DBH, soil thickness and vegetation type. The main factors affecting wood density of Liquidambar formosana are slope aspect, altitude, average height, height under branch. The height under the branch is the common main influencing factor, affecting wood density of the three tree species, and the relative influence upon three tree species was similar, all of which was about 10%. (3) Stand factor and single tree factor are the dominant factors affecting trunk density and wood density of Cinnamomum camphora, and their total relative influence rates were 87.04% and 76.92%, respectively. Stand factor, single tree factor and regional factor are the dominant factors affecting trunk density of Schima superba, and the total relative influence rate was 79.96%. The dominant factors affecting wood density of Schima superba are stand factor, single tree factor and soil factor, and the total relative influence rate was 83.04%. Terrain factor, stand factors and single tree factor are the main factors affecting trunk density and wood density of Liquidambar formosana, and their total relative influence rates were 83.98% and 92.70%, respectively.
    Conclusion This paper analyzes different factors by multifactor analysis of variance and BRT, and it is concluded that stand factor and single tree factor are the dominant factors affecting trunk density and wood density of Cinnamomum camphora, Schima superba and Liquidambar formosana.
  • [1]
    Henry M, Besnard A, Asante W A, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa[J]. Forest Ecology and Management, 2010, 260(8): 1375−1388. doi: 10.1016/j.foreco.2010.07.040
    [2]
    董利虎, 李凤日, 贾炜玮. 黑龙江省红松人工林立木生物量估算模型的研建[J]. 北京林业大学学报, 2012, 34(6):16−22.

    Dong L H, Li F R, Jia W W. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16−22.
    [3]
    李海奎, 赵鹏祥, 雷渊才, 等. 基于森林清查资料的乔木林生物量估算方法的比较[J]. 林业科学, 2012, 48(5):44−52. doi: 10.11707/j.1001-7488.20120507

    Li H K, Zhao P X, Lei Y C, et al. Comparison on estimation of wood biomass using forest inventory data[J]. Scientia Silvae Sinicae, 2012, 48(5): 44−52. doi: 10.11707/j.1001-7488.20120507
    [4]
    符利勇, 雷渊才, 曾伟生. 几种相容性生物量模型及估计方法的比较[J]. 林业科学, 2014, 50(6):42−54.

    Fu L Y, Lei Y C, Zeng W S. Comparison of several compatible biomass models and estimation approaches[J]. Scientia Silvae Sinicae, 2014, 50(6): 42−54.
    [5]
    曾伟生. 基于木材密度的34个树种组一元立木生物量模型建立[J]. 林业资源管理, 2017(6):41−46.

    Zeng W S. Developing one-variable individual tree biomass models based on wood density for 34 tree species in China[J]. Forest Resources Management, 2017(6): 41−46.
    [6]
    张会儒, 唐守正, 胥辉. 树干平均密度的估计方法研究[J]. 林业科学研究, 1998, 11(1):58−62.

    Zhang H R, Tang S Z, Xu H. Studies on the estimate method for average stem density[J]. Forest Research, 1998, 11(1): 58−62.
    [7]
    He D, Deane D C. The relationship between trunk- and twigwood density shifts with tree size and species stature[J]. Forest Ecology and Management, 2016, 372: 137−142. doi: 10.1016/j.foreco.2016.04.015
    [8]
    Dadzie P K, Amoah M, Boampong E, et al. Effect of density and moisture content on biological durability of stem and branch wood of Entandrophragma cylindricum, (sapele)[J]. Journal of the Indian Academy of Wood Science, 2015, 12(1): 44−53. doi: 10.1007/s13196-015-0143-5
    [9]
    Wu R. Microstructural study of sanded and polished wood by replication[J]. Wood Science and Technology, 1998, 32(4): 247−260. doi: 10.1007/BF00702893
    [10]
    Machado J S, Louzada J L, Santos A J A, et al. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.)[J]. Materials & Design, 2014, 56(4): 975−980.
    [11]
    Molteberg D, Hoibo O. Modelling of wood density and fibre dimensions in mature Norway spruce[J]. Canadian Journal of Forest Research, 2007, 37(37): 1373−1389.
    [12]
    Poorter L, Wright S J, Paz H, et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests[J]. Ecology, 2008, 89(7): 1908−1920. doi: 10.1890/07-0207.1
    [13]
    尹惠妍. 大区域森林生物量估算方法研究[D]. 北京: 中国林业科学研究院, 2014.

    Yin H Y. Study on estimation method to regional forest biomass[D]. Beijing: Chinese Academy of Forestry, 2014.
    [14]
    王仲锋. 森林生物量建模与精度分析[D]. 北京: 北京林业大学, 2006.

    Wang Z F. On the forest biomass's modeling and precision analysis[D]. Beijing: Beijing Forestry University, 2006.
    [15]
    罗云建. 华北落叶松人工林生物量碳计量参数研究[D]. 北京: 中国林业科学研究院, 2007.

    Luo Y J. Study on biomass carbon accounting factors of Larix principis-rupprechtii plantation[D]. Beijing: Chinese Academy of Forestry, 2007.
    [16]
    Patino S, Lloyd J, Paiva R, et al. Branch xylem density variations across the Amazon Basin[J]. Biogeosciences, 2009, 6(4): 545−568. doi: 10.5194/bg-6-545-2009
    [17]
    徐金梅, 吕建雄, 鲍甫成, 等. 祁连山青海云杉木材密度对气候变化的响应[J]. 北京林业大学学报, 2011, 33(5):115−121.

    Xu J M, Lü J X, Bao F C, et al. Response of wood density of Picea crassifolia to climate change in Qilian Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2011, 33(5): 115−121.
    [18]
    徐明锋, 柯娴氡, 张毅, 等. 粤东6种阔叶树木材密度及其影响因子研究[J]. 华南农业大学学报, 2016, 37(3):100−106. doi: 10.7671/j.issn.1001-411X.2016.03.016

    Xu M F, Ke X D, Zhang Y, et al. Wood densities of six hardwood tree species in Eastern Guangdong and influencing factors[J]. Journal of South China Agricultural University, 2016, 37(3): 100−106. doi: 10.7671/j.issn.1001-411X.2016.03.016
    [19]
    Koprowski M, Duncker P. Tree ring width and wood density as the indicators of climatic factors and insect outbreaks affecting spruce growth[J]. Ecological Indicators, 2012, 23(4): 332−337.
    [20]
    朱丽梅, 胥辉. 思茅松树干平均密度估计方法研究[J]. 西南林业大学学报, 2008, 28(2):17−20. doi: 10.3969/j.issn.2095-1914.2008.02.005

    Zhu L M, Xu H. Studies on estimation methods for average stem density of Pinus kesiya var. langbianensis[J]. Journal of Southwest Forestry University, 2008, 28(2): 17−20. doi: 10.3969/j.issn.2095-1914.2008.02.005
    [21]
    Nguyen H, Firn J, Lamb D, et al. Wood density: a tool to find complementary species for the design of mixed species plantations[J]. Forest Ecology and Management, 2014, 334: 106−113. doi: 10.1016/j.foreco.2014.08.022
    [22]
    王秀花, 陈柳英, 马丽珍, 等. 7年生木荷生长和木材基本密度地理遗传变异及种源选择[J]. 林业科学研究, 2011, 24(3):307−313.

    Wang X H, Chen L Y, Ma L Z, et al. Geographical provenance variation of growth and wood basic density of 7-year-old Schima superba and its provenance selection[J]. Forest Research, 2011, 24(3): 307−313.
    [23]
    黄继丰, 冯学周, 莫罗坚, 等. 粤北10种乡土阔叶树种生长及根际养分比较[J]. 林业与环境科学, 2006, 22(3):17−21. doi: 10.3969/j.issn.1006-4427.2006.03.004

    Huang J F, Feng X Z, Mo L J, et al. Growth and rhizospheic fertility of 10 native broad-leaved trees in north Guangdong[J]. Forestry and Environmental Science, 2006, 22(3): 17−21. doi: 10.3969/j.issn.1006-4427.2006.03.004
    [24]
    Franklin J, McCullough P, Gray C. Terrain variables used for predictive mapping of vegetation communities in Southern California[M]//Wilson J P, Gallant J C. Terrain analysis: principles and applications. New York: John Wiley and Sons, 2000: 331−353.
    [25]
    De'ath G. Boosted trees for ecological modeling and prediction[J]. Ecology, 2007, 88(1): 243−251. doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
    [26]
    Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77(4): 802−813. doi: 10.1111/j.1365-2656.2008.01390.x
    [27]
    Weisberg P J, Shandra O, Becker M E. Landscape influences on recent timberline shifts in the Carpathian Mountains: abiotic influences modulate effects of land-use change[J]. Arctic, Antarctic, and Alpine Research, 2013, 45(3): 404−414. doi: 10.1657/1938-4246-45.3.404
    [28]
    Pittman S J, Costa B M, Battista T A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals[J]. Journal of Coastal Research, 2009, 25(6): 27−38.
    [29]
    焦琳琳, 常禹, 申丹, 等. 利用增强回归树分析中国野火空间分布格局的影响因素[J]. 生态学杂志, 2015, 34(8):2288−2296.

    Jiao L L, Chang Y, Shen D, et al. Using boosted regression trees to analyze the factors affecting the spatial distribution pattern of wildfire in China[J]. Chinese Journal of Ecology, 2015, 34(8): 2288−2296.
    [30]
    李春林, 刘淼, 胡远满, 等. 基于增强回归树和Logistic回归的城市扩展驱动力分析[J]. 生态学报, 2014, 34(3):727−737.

    Li C L, Liu M, Hu Y M, et al. Driving forces analysis of urban expansion based on boosted regression trees and Logistic regression[J]. Acta Ecologica Sinica, 2014, 34(3): 727−737.
    [31]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.

    Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012.
    [32]
    张大鹏. 不同海拔高度对马尾松茎木质部结构的影响[J]. 生态学杂志, 1994, 13(2):12−18.

    Zhang D P. Xylem structure of Pinus massonions stem at different altitudes[J]. Chinese Journal of Ecology, 1994, 13(2): 12−18.
    [33]
    刘彦春, 张远东, 刘世荣, 等. 川西亚高山针阔混交林乔木层生物量、生产力随海拔梯度的变化[J]. 生态学报, 2010, 30(21):5810−5820.

    Liu Y C, Zhang Y D, Liu S R, et al. Changes of tree layer aboveground biomass, ANPP to altitudinal gradient in the subalpine secondary mixed forest of Western Sichuan, China[J]. Acta Ecologica Sinica, 2010, 30(21): 5810−5820.
    [34]
    国家林业局. 立木生物量模型及碳计量参数: 木荷: LY/T 2660—2016[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Schima superba: LY/T 2660—2016[S]. Beijing: Standards Press of China, 2017.
    [35]
    国家林业局. 立木生物量模型及碳计量参数: 枫香: LY/T 2661—2016[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Liquidambar formosana: LY/T 2661—2016[S]. Beijing: Standards Press of China, 2017.
    [36]
    闫晶, 罗云建, 郑德福, 等. 桉树生物量估算差异的源解析[J]. 林业科学, 2014, 50(2):92−98.

    Yan J, Luo Y J, Zheng D F, et al. Source appointment of differences in biomass estimates of eucalypt plantation[J]. Scientia Silvae Sinicae, 2014, 50(2): 92−98.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (2259) PDF downloads (67) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return