Citation: | Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001 |
[1] |
Melillo J M, Mcguire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature, 1993, 363: 234−240. doi: 10.1038/363234a0
|
[2] |
沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068−1076.
Shen Y P, Wang G Y. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068−1076.
|
[3] |
Working Group of the IPCC. Climate change 2013: the physical science basis[J]. Contribution of Working, 2013, 43(22): 866−871.
|
[4] |
米兆荣, 陈立同, 张振华, 等. 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J]. 植物生态学报, 2015, 39(7):649−660.
Mi Z R, Chen L T, Zhang Z H, et al. Alpine grassland water use efficiency based on annual precipitation, growing season precipitation and growing season evapotranspiration[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 649−660.
|
[5] |
胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
Hu Z M, Yu G R, Wang Q F, et al. Ecosystem level water use efficiency: a review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
|
[6] |
王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 2010, 21(12):3255−3265.
Wang Q W, Yu D P, Dai L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3255−3265.
|
[7] |
熊伟, 王彦辉, 于澎涛. 树木水分利用效率研究综述[J]. 生态学杂志, 2005, 24(4):417−421. doi: 10.3321/j.issn:1000-4890.2005.04.015
Xiong W, Wang Y H, Yu P T. A review on the study of water use efficiency of tree species[J]. Chinese Journal of Ecology, 2005, 24(4): 417−421. doi: 10.3321/j.issn:1000-4890.2005.04.015
|
[8] |
王会肖, 刘昌明. 作物水分利用效率内涵及研究进展[J]. 水科学进展, 2000, 11(1):99−104. doi: 10.3321/j.issn:1001-6791.2000.01.018
Wang H X, Liu C M. Advances in crop water use efficiency research[J]. Advances in Water Science, 2000, 11(1): 99−104. doi: 10.3321/j.issn:1001-6791.2000.01.018
|
[9] |
Chen S, Bai Y, Han X. Variations in composition and water use efficiency of plant functional groups based on their water ecological groups in the Xilin River Basin[J]. Journal of Integrative Plant Biology, 2003, 63(3): 241−242.
|
[10] |
于贵瑞, 王秋凤, 方华军. 陆地生态系统碳−氮−水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究, 2014, 34(4):683−698. doi: 10.3969/j.issn.1001-7410.2014.04.01
Yu G R, Wang Q F, Fang H J. Fundamental scientific issues, theoretical framework and relative research methods of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J]. Quaternary Sciences, 2014, 34(4): 683−698. doi: 10.3969/j.issn.1001-7410.2014.04.01
|
[11] |
Huang M, Piao S, Sun Y, et al. Change in terrestrial ecosystem water-use efficiency over the last three decades[J]. Global Chang Biology, 2015, 21(6): 2366−2378. doi: 10.1111/gcb.12873
|
[12] |
Zhu X J, Yu G R, Wang Q F, et al. Spatial variability of water use efficiency in China’s terrestrial ecosystems[J]. Global & Planetary Change, 2015, 129: 37−44.
|
[13] |
Guirui Y, Xia S, Qiufeng W, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. The New Phytologist, 2010, 177(4): 927−937.
|
[14] |
Mi Z, Yu G R, Jie Z, et al. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China[J]. Agricultural & Forest Meteorology, 2011, 151(7): 803−816.
|
[15] |
Zhang F M, Ju W M, Shen S H, et al. How recent climate change influences water use efficiency in East Asia[J]. Theoretical & Applied Climatology, 2014, 116(1-2): 359−370.
|
[16] |
Yu G, Song X, Wang Q, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. The New Phytologist, 2008, 177(4): 927−937. doi: 10.1111/nph.2008.177.issue-4
|
[17] |
刘宁, 孙鹏森, 刘世荣, 等. 流域水碳过程耦合模拟: WaSSI-C模型的率定与检验[J]. 植物生态学报, 2013, 37(6):492−502.
Liu N, Sun P S, Liu S R, et al. Coupling simulation of water-carbon processes for catchment: calibration and validation of the WaSSI-C model[J]. Chinese Journal of Plant Ecology, 2013, 37(6): 492−502.
|
[18] |
Liu Y, Xiao J, Ju W, et al. Water use efficiency of China ’s terrestrial ecosystems and responses to drought[J/OL]. Scientific Reports, 2015, 5(5): 13799. [2018−03−10]. https://www.Ncbi.nim.gov/pmc/articles/PMC4562296.
|
[19] |
于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1):1−13.
Yu G R, Gao Y, Wang Q F, et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1−13.
|
[20] |
卢宇婷, 林禹攸, 彭乔姿, 等. 模拟退火算法改进综述及参数探究[J]. 大学数学, 2015, 31(6):96−103. doi: 10.3969/j.issn.1672-1454.2015.06.020
Lu Y T, Lin Y Y, Peng Q Z, et al. A review of improvement and research on parameters of simulated annealing algorithm[J]. College Mathematics, 2015, 31(6): 96−103. doi: 10.3969/j.issn.1672-1454.2015.06.020
|
[21] |
Sahoo D, Smith P K, Ines A V M. Autocalibration of HSPF for simulation of streamflow using a genetic algorithm[J]. Transactions of the ASABE, 2010, 53: 75−86. doi: 10.13031/2013.29504
|
[22] |
高伟, 周丰, 董延军, 等. 基于PEST的HSPF水文模型多目标自动校准研究[J]. 自然资源学报, 2014, 29(5):855−867.
Gao W, Zhou F, Dong Y J, et al. PEST-based multi-objective automatic calibration of hydrologic parameters for HSPF model[J]. Journal of Natural Resources, 2014, 29(5): 855−867.
|
[23] |
吴玉莲, 王襄平, 李巧燕, 等. 长白山阔叶红松林净初级生产力对气候变化的响应: 基于BIOME-BGC模型的分析[J]. 北京大学学报(自然科学版), 2014, 50(3):577−586.
Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on Biome-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 577−586.
|
[24] |
彭俊杰, 何兴元, 陈振举, 等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应: 基于BIOME-BGC模型和树木年轮的模拟[J]. 应用生态学报, 2012, 23(7):1733−1742.
Peng J J, He X Y, Chen Z J, et al. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on Biome-BGC model and tree-ring data[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1733−1742.
|
[25] |
张廷龙, 孙睿, 胡波, 等. 改进Biome-BGC模型模拟哈佛森林地区水、碳通量[J]. 生态学杂志, 2011, 30(9):2099−2106.
Zhang T L, Sun R, Hu B, et al. Simulation of water and carbon fluxes in Harvard forest area by using improved Biome-BGC model[J]. Chinese Journal of Ecology, 2011, 30(9): 2099−2106.
|
[26] |
谢馨瑶, 李爱农, 靳华安. 大尺度森林碳循环过程模拟模型综述[J]. 生态学报, 2018, 38(1):41−54. doi: 10.3969/j.issn.1673-1182.2018.01.009
Xie Q Y, Li A N, Jin H A. The simulation models of the forest carbon cycle on a large scale: a review[J]. Acta Ecologica Sinica, 2018, 38(1): 41−54. doi: 10.3969/j.issn.1673-1182.2018.01.009
|
[27] |
Ueyama M, Ichii K, Hirata R, et al. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data[J]. Biogeosciences, 2010, 7(3): 959−977. doi: 10.5194/bg-7-959-2010
|
[28] |
李书恒, 侯丽, 史阿荣, 等. 基于Biome-BGC模型及树木年轮的太白红杉林生态系统对气候变化的响应[J]. 生态学报, 2018, 38(20):1−11.
Li S H, Hou L, Shi A R, et al. Response of Larix chinensis forest ecosystem to climate change based on Biome-BGC model and tree rings[J]. Acta Ecologica Sinica, 2018, 38(20): 1−11.
|
[29] |
李一哲, 张廷龙, 刘秋雨, 等. 生态过程模型敏感参数最优取值的时空异质性分析: 以BIOME-BGC模型为例[J]. 应用生态学报, 2018, 29(1):84−92.
Li Y Z, Zhang T L, Liu Q Y, et al. Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: the BIOME-BGC model as an example[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 84−92.
|
[30] |
Watson T A, Doherty J E, Christensen S. Parameter and predictive outcomes of model simplification[J]. Water Resources Research, 2013, 49(7): 3952−3977. doi: 10.1002/wrcr.20145
|
[31] |
董艳辉, 李国敏, 郭永海, 等. 应用并行PEST算法优化地下水模型参数[J]. 工程地质学报, 2010, 18(1):140−144. doi: 10.3969/j.issn.1004-9665.2010.01.021
Dong Y H, Li G M, Guo Y H, et al. Optimization of model parameters for ground water flow using parallelized PEST method[J]. Journal of Engineering Geology, 2010, 18(1): 140−144. doi: 10.3969/j.issn.1004-9665.2010.01.021
|
[32] |
梁浩, 胡克林, 李保国. 基于PEST的土壤−作物系统模型参数优化及灵敏度分析[J]. 农业工程学报, 2016, 32(3):78−85.
Liang H, Hu K L, Li B G. Parameter optimization and sensitivity analysis of soil-crop system model using PEST[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 78−85.
|
[33] |
王礼恒, 董艳辉, 李国敏, 等. 基于PEST的地下水数值模拟参数优化的应用[J]. 工程勘察, 2014, 42(3):38−42. doi: 10.3969/j.issn.1000-1433.2014.03.009
Wang L H, Dong Y H, Li G M, et al. Application of groundwater numerical simulation for parameter optimization based on PEST[J]. Geotechnical Investigation & Surveying, 2014, 42(3): 38−42. doi: 10.3969/j.issn.1000-1433.2014.03.009
|
[34] |
Nolan B T, Malone R W, Doherty J E, et al. Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States[J]. Pest Management Science, 2015, 71(7): 972−985. doi: 10.1002/ps.3875
|
[35] |
White M A, Thornton P E, Running S W, et al. Parameterization and sensitivity analysis of the BIOME-BG C terrestrial ecosystem model: net primary production controls[J]. Earth Interactions, 2000, 4(3): 1−84. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
|
[36] |
Etheridge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D2): 4115−4128. doi: 10.1029/95JD03410
|
[37] |
张笑鹤. 西南地区NDVI和NPP时空动态及其与气候因子相关性分析[D]. 北京: 中国林业科学研究院, 2011.
Zhang X H. Spatio-temporal dynamic of NDVI and NPP and their correlation with climatic factors in Southwest China[D]. Beijing: Chinese Academy of Forestry, 2011.
|
[38] |
孙福宝. 基于Budyko水热耦合平衡假设的流域蒸散发研究[D]. 北京: 清华大学, 2007.
Sun F B. Study on watershed evapotranspiration based on the Budyko Hypothesis[D]. Beijing: Tsinghua University, 2007.
|
[39] |
仇宽彪. 中国植被总初级生产力、蒸散发及水分利用效率的估算及时空变化[D]. 北京: 北京林业大学, 2015.
Qiu K B. Estimating regional vegetation gross primary productivity (GPP), evapotranspiration (ET), water use efficiency (WUE) and their spatial and temporal distribution across China[D]. Beijing: Beijing Forestry University, 2015.
|
[40] |
Norby R J, Zak D R. Ecological lessons from free-air CO2 enrichment (FACE) experiments[J]. Annual Review of Ecology Evolution & Systematics, 2011, 42(1): 181−203.
|
[41] |
Betts R A, Cox P M, Lee S E, et al. Contrasting physiological and structural vegetation feedbacks in climate change simulations[J]. Nature, 1997, 387: 796−799. doi: 10.1038/42924
|
[42] |
Piao S, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15242−15247. doi: 10.1073/pnas.0707213104
|
[43] |
Betts R A, Boucher O, Collins M, et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide[J]. Nature, 2007, 448: 1037−1041. doi: 10.1038/nature06045
|
[44] |
Zhu Q, Jiang H, Peng C, et al. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China[J]. Global & Planetary Change, 2012, 80-81(1): 123−135.
|
[45] |
Hungate B A, Reichstein M, Dijkstra P, et al. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment[J]. Global Change Biology, 2010, 8(3): 289−298.
|
[46] |
Körner C, Basler D. Phenology under global warming[J]. Science, 2010, 327: 1461−1462. doi: 10.1126/science.1186473
|
[47] |
Gunderson C A, Edwards N T, Walker A V, et al. Forest phenology and a warmer climate growing season extension in relation to climatic provenance[J]. Global Change Biology, 2012, 18(6): 2008−2025. doi: 10.1111/gcb.2012.18.issue-6
|
[48] |
Flanagan L B, Syed K H. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem[J]. Global Change Biology, 2011, 17(7): 2271−2287. doi: 10.1111/j.1365-2486.2010.02378.x
|
[49] |
Serrat-Capdevila A, Scott R L, Shuttleworth W J, et al. Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system[J]. Journal of Hydrology, 2011, 399(1): 1−11.
|
[50] |
张远东, 庞瑞, 顾峰雪, 等. 西南高山地区水分利用效率时空动态及其对气候变化的响应[J]. 生态学报, 2016, 36(6):1515−1525.
Zhang Y D, Pang R, Gu F X, et al. Temporal-spatial variations of WUE and its response to climate change in alpine area of southwestern China[J]. Acta Ecologica Sinica, 2016, 36(6): 1515−1525.
|
[51] |
Gagen M, Finsinger W, Wagnercremer F, et al. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios[J]. Global Change Biology, 2011, 17(2): 1064−1072. doi: 10.1111/gcb.2010.17.issue-2
|
[52] |
De Kauwe M G, Medlyn B E, Zaehle S, et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites[J]. Global Change Biology, 2013, 19(6): 1759−1779. doi: 10.1111/gcb.12164
|
[53] |
Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499: 324−327. doi: 10.1038/nature12291
|
[54] |
Morison J I L. Sensitivity of stomata and water use efficiency to high CO2[J]. Plant Cell & Environment, 1985, 8(6): 467−474.
|
[55] |
Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant Cell & Environment, 2007, 30(3): 258−270.
|
[56] |
Dietergerten A. Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture and runoff under potential natural vegetation[J]. International Association of Scientific Hydrology Bulletin, 2006, 51(1): 171−185. doi: 10.1623/hysj.51.1.171
|
[57] |
Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual Review of Plant Biology, 2004, 55(1): 591−628. doi: 10.1146/annurev.arplant.55.031903.141610
|