• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001
Citation: Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001

Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China

More Information
  • Received Date: January 19, 2019
  • Revised Date: March 13, 2019
  • Available Online: April 29, 2019
  • Published Date: March 31, 2019
  • ObjectiveThe objectives of this study are to explore the impact factors of forest ecosystem water use efficiency and its response to climate change in the context of global climate change.
    MethodWe used the Biome-BGC model optimized by PEST model parameters to explore the water use efficiency and its influencing factors of the Qianyanzhou forest ecosystem in different climate scenarios, Jiangxi Province of eastern China.
    Result(1) The annual average temperature and maximum leaf area index of Qianyanzhou were significantly positively correlated with water use efficiency (P < 0.01). The correlation between precipitation and water use efficiency was not significant (P > 0.05). (2) The water use efficiency of different scenarios in Qianyanzhou was in the range of 2.09−3.71 g/kg and the mean was 2.90 g/kg. (3) Compared with CK (2.18−2.57 g/kg, mean 2.38 g/kg), double the concentration of atmospheric carbon dioxide scenario (C scenario, 2.38−3.41 g/kg, mean 2.90 g/kg), annual precipitation increased by 15% and double the concentration of atmospheric carbon dioxide scenario (PC scenario, 2.38−3.33 g/kg, mean 2.86 g/kg), temperature increased by 4 ℃ and double the concentration of atmospheric carbon dioxide scenario (TC scenario, 2.58−3.71 g/kg, mean 3.15 g/kg), annual precipitation increased by 15% and temperature increased by 4 ℃ scenario (PT scenario, 2.30−2.84 g/kg, mean 2.57 g/kg) and annual precipitation increased by 15%, temperature increased by 4 ℃ and double the concentration of atmospheric carbon dioxide scenario (PTC scenario, 2.70−3.60 g/kg, mean 3.15 g/kg) were significantly different. However, the annual precipitation increased by 15% scenario (P scenarion, 2.09−2.68 g/kg, mean 2.39 g/kg) and the temperature rised by 4 ℃ scenario (T scenario, 2.13−2.81 g/kg, mean 2.47 g/kg) had no significant effect on water use efficiency. (4) The water use efficiency between the PC scenario and the C scenario was not significant, and the TC scenario was significantly different from the water use efficiency of the C scenario.
    Conclusion(1) The water use efficiency of Qianyanzhou forest ecosystem was affected by temperature and leaf area index. Scenario simulations showed that water use efficiency of Qianyanzhou can respond well to climate change. (2) There existed coupling effects of precipitation, temperature and atmospheric carbon dioxide concentration on water use efficiency. (3) The effect of warming on water use efficiency was greater than precipitation.
  • [1]
    Melillo J M, Mcguire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature, 1993, 363: 234−240. doi: 10.1038/363234a0
    [2]
    沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068−1076.

    Shen Y P, Wang G Y. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1068−1076.
    [3]
    Working Group of the IPCC. Climate change 2013: the physical science basis[J]. Contribution of Working, 2013, 43(22): 866−871.
    [4]
    米兆荣, 陈立同, 张振华, 等. 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J]. 植物生态学报, 2015, 39(7):649−660.

    Mi Z R, Chen L T, Zhang Z H, et al. Alpine grassland water use efficiency based on annual precipitation, growing season precipitation and growing season evapotranspiration[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 649−660.
    [5]
    胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048

    Hu Z M, Yu G R, Wang Q F, et al. Ecosystem level water use efficiency: a review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
    [6]
    王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 2010, 21(12):3255−3265.

    Wang Q W, Yu D P, Dai L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3255−3265.
    [7]
    熊伟, 王彦辉, 于澎涛. 树木水分利用效率研究综述[J]. 生态学杂志, 2005, 24(4):417−421. doi: 10.3321/j.issn:1000-4890.2005.04.015

    Xiong W, Wang Y H, Yu P T. A review on the study of water use efficiency of tree species[J]. Chinese Journal of Ecology, 2005, 24(4): 417−421. doi: 10.3321/j.issn:1000-4890.2005.04.015
    [8]
    王会肖, 刘昌明. 作物水分利用效率内涵及研究进展[J]. 水科学进展, 2000, 11(1):99−104. doi: 10.3321/j.issn:1001-6791.2000.01.018

    Wang H X, Liu C M. Advances in crop water use efficiency research[J]. Advances in Water Science, 2000, 11(1): 99−104. doi: 10.3321/j.issn:1001-6791.2000.01.018
    [9]
    Chen S, Bai Y, Han X. Variations in composition and water use efficiency of plant functional groups based on their water ecological groups in the Xilin River Basin[J]. Journal of Integrative Plant Biology, 2003, 63(3): 241−242.
    [10]
    于贵瑞, 王秋凤, 方华军. 陆地生态系统碳−氮−水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究, 2014, 34(4):683−698. doi: 10.3969/j.issn.1001-7410.2014.04.01

    Yu G R, Wang Q F, Fang H J. Fundamental scientific issues, theoretical framework and relative research methods of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J]. Quaternary Sciences, 2014, 34(4): 683−698. doi: 10.3969/j.issn.1001-7410.2014.04.01
    [11]
    Huang M, Piao S, Sun Y, et al. Change in terrestrial ecosystem water-use efficiency over the last three decades[J]. Global Chang Biology, 2015, 21(6): 2366−2378. doi: 10.1111/gcb.12873
    [12]
    Zhu X J, Yu G R, Wang Q F, et al. Spatial variability of water use efficiency in China’s terrestrial ecosystems[J]. Global & Planetary Change, 2015, 129: 37−44.
    [13]
    Guirui Y, Xia S, Qiufeng W, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. The New Phytologist, 2010, 177(4): 927−937.
    [14]
    Mi Z, Yu G R, Jie Z, et al. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China[J]. Agricultural & Forest Meteorology, 2011, 151(7): 803−816.
    [15]
    Zhang F M, Ju W M, Shen S H, et al. How recent climate change influences water use efficiency in East Asia[J]. Theoretical & Applied Climatology, 2014, 116(1-2): 359−370.
    [16]
    Yu G, Song X, Wang Q, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. The New Phytologist, 2008, 177(4): 927−937. doi: 10.1111/nph.2008.177.issue-4
    [17]
    刘宁, 孙鹏森, 刘世荣, 等. 流域水碳过程耦合模拟: WaSSI-C模型的率定与检验[J]. 植物生态学报, 2013, 37(6):492−502.

    Liu N, Sun P S, Liu S R, et al. Coupling simulation of water-carbon processes for catchment: calibration and validation of the WaSSI-C model[J]. Chinese Journal of Plant Ecology, 2013, 37(6): 492−502.
    [18]
    Liu Y, Xiao J, Ju W, et al. Water use efficiency of China ’s terrestrial ecosystems and responses to drought[J/OL]. Scientific Reports, 2015, 5(5): 13799. [2018−03−10]. https://www.Ncbi.nim.gov/pmc/articles/PMC4562296.
    [19]
    于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1):1−13.

    Yu G R, Gao Y, Wang Q F, et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 1−13.
    [20]
    卢宇婷, 林禹攸, 彭乔姿, 等. 模拟退火算法改进综述及参数探究[J]. 大学数学, 2015, 31(6):96−103. doi: 10.3969/j.issn.1672-1454.2015.06.020

    Lu Y T, Lin Y Y, Peng Q Z, et al. A review of improvement and research on parameters of simulated annealing algorithm[J]. College Mathematics, 2015, 31(6): 96−103. doi: 10.3969/j.issn.1672-1454.2015.06.020
    [21]
    Sahoo D, Smith P K, Ines A V M. Autocalibration of HSPF for simulation of streamflow using a genetic algorithm[J]. Transactions of the ASABE, 2010, 53: 75−86. doi: 10.13031/2013.29504
    [22]
    高伟, 周丰, 董延军, 等. 基于PEST的HSPF水文模型多目标自动校准研究[J]. 自然资源学报, 2014, 29(5):855−867.

    Gao W, Zhou F, Dong Y J, et al. PEST-based multi-objective automatic calibration of hydrologic parameters for HSPF model[J]. Journal of Natural Resources, 2014, 29(5): 855−867.
    [23]
    吴玉莲, 王襄平, 李巧燕, 等. 长白山阔叶红松林净初级生产力对气候变化的响应: 基于BIOME-BGC模型的分析[J]. 北京大学学报(自然科学版), 2014, 50(3):577−586.

    Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on Biome-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 577−586.
    [24]
    彭俊杰, 何兴元, 陈振举, 等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应: 基于BIOME-BGC模型和树木年轮的模拟[J]. 应用生态学报, 2012, 23(7):1733−1742.

    Peng J J, He X Y, Chen Z J, et al. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on Biome-BGC model and tree-ring data[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1733−1742.
    [25]
    张廷龙, 孙睿, 胡波, 等. 改进Biome-BGC模型模拟哈佛森林地区水、碳通量[J]. 生态学杂志, 2011, 30(9):2099−2106.

    Zhang T L, Sun R, Hu B, et al. Simulation of water and carbon fluxes in Harvard forest area by using improved Biome-BGC model[J]. Chinese Journal of Ecology, 2011, 30(9): 2099−2106.
    [26]
    谢馨瑶, 李爱农, 靳华安. 大尺度森林碳循环过程模拟模型综述[J]. 生态学报, 2018, 38(1):41−54. doi: 10.3969/j.issn.1673-1182.2018.01.009

    Xie Q Y, Li A N, Jin H A. The simulation models of the forest carbon cycle on a large scale: a review[J]. Acta Ecologica Sinica, 2018, 38(1): 41−54. doi: 10.3969/j.issn.1673-1182.2018.01.009
    [27]
    Ueyama M, Ichii K, Hirata R, et al. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data[J]. Biogeosciences, 2010, 7(3): 959−977. doi: 10.5194/bg-7-959-2010
    [28]
    李书恒, 侯丽, 史阿荣, 等. 基于Biome-BGC模型及树木年轮的太白红杉林生态系统对气候变化的响应[J]. 生态学报, 2018, 38(20):1−11.

    Li S H, Hou L, Shi A R, et al. Response of Larix chinensis forest ecosystem to climate change based on Biome-BGC model and tree rings[J]. Acta Ecologica Sinica, 2018, 38(20): 1−11.
    [29]
    李一哲, 张廷龙, 刘秋雨, 等. 生态过程模型敏感参数最优取值的时空异质性分析: 以BIOME-BGC模型为例[J]. 应用生态学报, 2018, 29(1):84−92.

    Li Y Z, Zhang T L, Liu Q Y, et al. Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: the BIOME-BGC model as an example[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 84−92.
    [30]
    Watson T A, Doherty J E, Christensen S. Parameter and predictive outcomes of model simplification[J]. Water Resources Research, 2013, 49(7): 3952−3977. doi: 10.1002/wrcr.20145
    [31]
    董艳辉, 李国敏, 郭永海, 等. 应用并行PEST算法优化地下水模型参数[J]. 工程地质学报, 2010, 18(1):140−144. doi: 10.3969/j.issn.1004-9665.2010.01.021

    Dong Y H, Li G M, Guo Y H, et al. Optimization of model parameters for ground water flow using parallelized PEST method[J]. Journal of Engineering Geology, 2010, 18(1): 140−144. doi: 10.3969/j.issn.1004-9665.2010.01.021
    [32]
    梁浩, 胡克林, 李保国. 基于PEST的土壤−作物系统模型参数优化及灵敏度分析[J]. 农业工程学报, 2016, 32(3):78−85.

    Liang H, Hu K L, Li B G. Parameter optimization and sensitivity analysis of soil-crop system model using PEST[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 78−85.
    [33]
    王礼恒, 董艳辉, 李国敏, 等. 基于PEST的地下水数值模拟参数优化的应用[J]. 工程勘察, 2014, 42(3):38−42. doi: 10.3969/j.issn.1000-1433.2014.03.009

    Wang L H, Dong Y H, Li G M, et al. Application of groundwater numerical simulation for parameter optimization based on PEST[J]. Geotechnical Investigation & Surveying, 2014, 42(3): 38−42. doi: 10.3969/j.issn.1000-1433.2014.03.009
    [34]
    Nolan B T, Malone R W, Doherty J E, et al. Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States[J]. Pest Management Science, 2015, 71(7): 972−985. doi: 10.1002/ps.3875
    [35]
    White M A, Thornton P E, Running S W, et al. Parameterization and sensitivity analysis of the BIOME-BG C terrestrial ecosystem model: net primary production controls[J]. Earth Interactions, 2000, 4(3): 1−84. doi: 10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
    [36]
    Etheridge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn[J]. Journal of Geophysical Research Atmospheres, 1996, 101(D2): 4115−4128. doi: 10.1029/95JD03410
    [37]
    张笑鹤. 西南地区NDVI和NPP时空动态及其与气候因子相关性分析[D]. 北京: 中国林业科学研究院, 2011.

    Zhang X H. Spatio-temporal dynamic of NDVI and NPP and their correlation with climatic factors in Southwest China[D]. Beijing: Chinese Academy of Forestry, 2011.
    [38]
    孙福宝. 基于Budyko水热耦合平衡假设的流域蒸散发研究[D]. 北京: 清华大学, 2007.

    Sun F B. Study on watershed evapotranspiration based on the Budyko Hypothesis[D]. Beijing: Tsinghua University, 2007.
    [39]
    仇宽彪. 中国植被总初级生产力、蒸散发及水分利用效率的估算及时空变化[D]. 北京: 北京林业大学, 2015.

    Qiu K B. Estimating regional vegetation gross primary productivity (GPP), evapotranspiration (ET), water use efficiency (WUE) and their spatial and temporal distribution across China[D]. Beijing: Beijing Forestry University, 2015.
    [40]
    Norby R J, Zak D R. Ecological lessons from free-air CO2 enrichment (FACE) experiments[J]. Annual Review of Ecology Evolution & Systematics, 2011, 42(1): 181−203.
    [41]
    Betts R A, Cox P M, Lee S E, et al. Contrasting physiological and structural vegetation feedbacks in climate change simulations[J]. Nature, 1997, 387: 796−799. doi: 10.1038/42924
    [42]
    Piao S, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39): 15242−15247. doi: 10.1073/pnas.0707213104
    [43]
    Betts R A, Boucher O, Collins M, et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide[J]. Nature, 2007, 448: 1037−1041. doi: 10.1038/nature06045
    [44]
    Zhu Q, Jiang H, Peng C, et al. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China[J]. Global & Planetary Change, 2012, 80-81(1): 123−135.
    [45]
    Hungate B A, Reichstein M, Dijkstra P, et al. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment[J]. Global Change Biology, 2010, 8(3): 289−298.
    [46]
    Körner C, Basler D. Phenology under global warming[J]. Science, 2010, 327: 1461−1462. doi: 10.1126/science.1186473
    [47]
    Gunderson C A, Edwards N T, Walker A V, et al. Forest phenology and a warmer climate growing season extension in relation to climatic provenance[J]. Global Change Biology, 2012, 18(6): 2008−2025. doi: 10.1111/gcb.2012.18.issue-6
    [48]
    Flanagan L B, Syed K H. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem[J]. Global Change Biology, 2011, 17(7): 2271−2287. doi: 10.1111/j.1365-2486.2010.02378.x
    [49]
    Serrat-Capdevila A, Scott R L, Shuttleworth W J, et al. Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system[J]. Journal of Hydrology, 2011, 399(1): 1−11.
    [50]
    张远东, 庞瑞, 顾峰雪, 等. 西南高山地区水分利用效率时空动态及其对气候变化的响应[J]. 生态学报, 2016, 36(6):1515−1525.

    Zhang Y D, Pang R, Gu F X, et al. Temporal-spatial variations of WUE and its response to climate change in alpine area of southwestern China[J]. Acta Ecologica Sinica, 2016, 36(6): 1515−1525.
    [51]
    Gagen M, Finsinger W, Wagnercremer F, et al. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios[J]. Global Change Biology, 2011, 17(2): 1064−1072. doi: 10.1111/gcb.2010.17.issue-2
    [52]
    De Kauwe M G, Medlyn B E, Zaehle S, et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites[J]. Global Change Biology, 2013, 19(6): 1759−1779. doi: 10.1111/gcb.12164
    [53]
    Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499: 324−327. doi: 10.1038/nature12291
    [54]
    Morison J I L. Sensitivity of stomata and water use efficiency to high CO2[J]. Plant Cell & Environment, 1985, 8(6): 467−474.
    [55]
    Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant Cell & Environment, 2007, 30(3): 258−270.
    [56]
    Dietergerten A. Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture and runoff under potential natural vegetation[J]. International Association of Scientific Hydrology Bulletin, 2006, 51(1): 171−185. doi: 10.1623/hysj.51.1.171
    [57]
    Long S P, Ainsworth E A, Rogers A, et al. Rising atmospheric carbon dioxide: plants FACE the future[J]. Annual Review of Plant Biology, 2004, 55(1): 591−628. doi: 10.1146/annurev.arplant.55.031903.141610
  • Cited by

    Periodical cited type(11)

    1. 韩再惠,陈燕,吴志俊,任黎,苗平,马红丽. 气候变化对内蒙古温带草原生态系统碳、水通量及水分利用效率的影响. 水利规划与设计. 2024(02): 38-43+67 .
    2. 张晨凤,贺丽,董廷发,邓东周,刘俊雁. 基于Biome-BGC模型的若尔盖不同沙地类型土壤水分植被承载力对气候变化的响应. 生态学杂志. 2024(06): 1833-1840 .
    3. 黄璐瑶,杜珊凤,纪小芳,管鑫,刘胜龙,叶丽敏,姜姜. 基于Biome-BGC模型的浙江凤阳山针阔混交林碳动态模拟. 南京林业大学学报(自然科学版). 2024(05): 11-20 .
    4. 袁洪艺,杜灵通,潘海珠,乔成龙,田静,易志远,吴宏玥,张祎,施光耀,Irumva Olivier. 基于参数优化的人工灌丛生态系统碳水通量模拟. 生态学报. 2023(13): 5546-5557 .
    5. 梅晓丹,李思然,李明禹,梁瀚文,周凯,赵凌龙. 2000—2021年黑龙江省植被水分利用效率的时空变化. 测绘与空间地理信息. 2023(11): 21-25 .
    6. 李润东. 北京松山落叶阔叶林生态系统水分利用效率变化特征及影响因素. 绿色科技. 2022(06): 155-159+167 .
    7. 吴冠宇. 基于Biome BGC模型的黄土丘陵区典型林地水分利用效率研究. 地下水. 2022(04): 104-106 .
    8. 贾畅,王丽娜,唐亚坤. 利用Biome-BGC模型模拟黄土区沙棘人工林碳通量时的生理生态参数敏感性. 林业科学. 2022(11): 49-60 .
    9. 郝海超,郝兴明,花顶,秦景秀,李玉朋,张齐飞. 2000—2018年中亚五国水分利用效率对气候变化的响应. 干旱区地理. 2021(01): 1-14 .
    10. 梅晓丹,李丹,王强,田静,田泽宇,刘丹丹. 基于Biome-BGC模型的小兴安岭森林碳通量时空分析. 测绘与空间地理信息. 2021(11): 7-10 .
    11. 尚真宇. 辽宁东部陆域生态涵养区水分利用效率时空变化及驱动因子分析. 水利规划与设计. 2020(04): 26-30 .

    Other cited types(13)

Catalog

    Article views (1949) PDF downloads (72) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return