• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhan Longfei, Yu Shuiqiang, Wang Weifeng, Wang Qi, Wang Jingbo. Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations[J]. Journal of Beijing Forestry University, 2019, 41(10): 11-19. DOI: 10.13332/j.1000-1522.20190011
Citation: Zhan Longfei, Yu Shuiqiang, Wang Weifeng, Wang Qi, Wang Jingbo. Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations[J]. Journal of Beijing Forestry University, 2019, 41(10): 11-19. DOI: 10.13332/j.1000-1522.20190011

Effects of horizontal spatial allocation on main fine root characters of Populus × euramericana cv. ‘Nanlin-95’ plantations

More Information
  • Received Date: January 14, 2019
  • Revised Date: June 23, 2019
  • Available Online: September 27, 2019
  • Published Date: September 30, 2019
  • ObjectiveThis paper aims to study the relationship between spatial distribution of main fine root traits and row spacing allocation of poplar.
    MethodFour different horizontal spatial allocations of Populus × euramericana cv. ‘Nanlin-95’ plantations (plant spacing × row spacing 3 m × 8 m, 5 m × 5 m, 6 m × 6 m and 4.5 m × 8 m, respectively) were selected as the research objects, root drilling method was used to study fine root biomass and specific root length. The spatial distribution characteristics of root length and density were studied.
    ResultThe results showed that horizontal spatial allocation had a significant effect on the spatial distribution characteristics of fine roots in poplar plantations. In vertical direction, fine root biomass, specific root length and root length density of low density (6 m × 6 m) stand were significantly higher than those of high density (3 m × 8 m, 5 m × 5 m). In horizontal direction, fine root biomass of rectangular (3 m × 8 m and 4.5 m × 8 m) stand was decreased as the distance from the trunk increased, while fine root biomass of square (5 m × 5 m and 6 m × 6 m) stand was negatively correlated with sampling distance. There was no significant correlation between the fine root length density, specific root length and sampling distance. 6 m × 6 m stand was higher than other stands at all horizontal distances.The fine root biomass, root length density and specific root length in the direction of plant spacing were always significantly lower than those in the direction of row spacing.
    ConclusionThe fine root biomass of poplar plantations with small row spacing, limited growth and large row spacing will decrease significantly at a distance from the trunk, resulting in space waste. The main fine root growth characteristics of low-density square (6 m × 6 m) poplar plantations are the best among the four row spacing allocation stands, which is more suitable for the initial row spacing of poplar plantations.
  • [1]
    王政权, 郭大立. 根系生态学[J]. 植物生态学报, 2008, 32(6):1213−1216. doi: 10.3773/j.issn.1005-264x.2008.06.001

    Wang Z Q, Guo D L. Root ecology[J]. Journal of Plant Ecology, 2008, 32(6): 1213−1216. doi: 10.3773/j.issn.1005-264x.2008.06.001
    [2]
    Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2010, 147(1): 13−31.
    [3]
    Lin B, Zongming H E, Gao S, et al. Short-term effects of root exclusion and litter removal on sandy soil carbon and nitrogen pools in three coastal plantation forests[J]. Acta Ecologica Sinica, 2017, 37(12): 15−36.
    [4]
    闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2017, 37(12):15−36.

    Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus euramericana plantation[J]. Acta Ecologica Sinica, 2017, 37(12): 15−36.
    [5]
    Vormstein S, Kaiser M, Piepho H P, et al. Effects of fine root characteristics of beech on carbon turnover in the topsoil and subsoil of a sandy Cambisol[J]. European Journal of Soil Science, 2017, 68(2): 19−25.
    [6]
    Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine[J]. Ecological Applications, 2004, 14(2): 460−475. doi: 10.1890/02-5291
    [7]
    Wang P, Mommer L, Ruijven J V, et al. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site[J]. Plant & Soil, 2016, 407(1−2): 1−11.
    [8]
    Kummerow J, Krause D, Jow W. Seasonal changes of fine root density in the Southern Californian chaparral[J]. Oecologia, 1978, 37(2): 201−212. doi: 10.1007/BF00344991
    [9]
    Olsthoorn A F M, Klap J M, Voshaar J H O. The relation between fine root density and proximity of stems in closed Douglas-fir plantations on homogenous sand soil: implications for sampling design[J]. Plant and Soil, 1999, 211(2): 215−221. doi: 10.1023/A:1004624707774
    [10]
    Chen G S, Yang Y S, He Z M, et al. Effects of proximity of stems and tree diameters on fine root density in plantations[J]. Acta Ecologica Sinica, 2005, 25(5): 1007−1011.
    [11]
    李盼盼. 杨树人工林细根的空间分布特征及其季节动态[D]. 泰安: 山东农业大学, 2012.

    Li P P. Spatial distribution characteristics and seasonal dynamics of fine roots in poplar plantations[D]. Taian: Shandong Agricultural University, 2012.
    [12]
    陈晓林, 陈亚鹏, 李卫红. 干旱区不同地下水埋深下胡杨细根空间分布特征[J]. 植物科学学报, 2018, 36(1):45−53. doi: 10.11913/PSJ.2095-0837.2018.10045

    Chen X L, Chen Y P, Li W H. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions[J]. Plant Science Journal, 2018, 36(1): 45−53. doi: 10.11913/PSJ.2095-0837.2018.10045
    [13]
    杨秀云, 韩有志, 张芸香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J]. 植物生态学报, 2008, 32(6):1277−1284. doi: 10.3773/j.issn.1005-264x.2008.06.008

    Yang X Y, Han Y Z, Zhang Y X. Effects of horizontal distance on fine root biomass and seasonal dynamics in Larix principis-rupprechtii plantation[J]. Journal of Plant Ecology, 2008, 32(6): 1277−1284. doi: 10.3773/j.issn.1005-264x.2008.06.008
    [14]
    燕亚飞, 方升佐, 田野, 等. 林下植物多样性及养分积累量对杨树林分结构的响应[J]. 生态学杂志, 2014, 33(5):1170−1177.

    Yan Y F, Fang S Z, Tian Y, et al. The response of understory plant diversity and nutrient accumulation to stand structure of poplar plantation[J]. Acta Ecologica Sinica, 2014, 33(5): 1170−1177.
    [15]
    王树堂, 韩士杰, 张军辉, 等. 长白山阔叶红松林表层土壤木本植物细根生物量及其空间分布[J]. 应用生态学报, 2010, 21(3):583−589.

    Wang S T, Han S J, Zhang J H, et al. Woody plant fine root biomass and its spatial distribution in top soil of broad-leaved Korean pine forest in Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2010, 21(3): 583−589.
    [16]
    Tron S, Perona P, Gorla L, et al. The signature of randomness in riparian plant root distributions[J]. Geophysical Research Letters, 2015, 42(17): 7098−7106. doi: 10.1002/2015GL064857
    [17]
    杜虎, 曾馥平, 宋同清, 等. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4):282−291. doi: 10.17521/cjpe.2015.0199

    Du H, Zeng F P, Song T Q, et al. Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China[J]. Chinese Journal of Plant Ecology, 2016, 40(4): 282−291. doi: 10.17521/cjpe.2015.0199
    [18]
    张艳杰, 温佐吾. 不同造林密度马尾松人工林的根系生物量[J]. 林业科学, 2011, 47(3):75−81. doi: 10.11707/j.1001-7488.20110312

    Zhang Y J, Wen Z W. Root biomass of Pinus massoniana plantations under different planting densities[J]. Scientia Silvae Sinicae, 2011, 47(3): 75−81. doi: 10.11707/j.1001-7488.20110312
    [19]
    高祥, 丁贵杰, 翟帅帅, 等. 不同林分密度马尾松人工林根系生物量及空间分布研究[J]. 中南林业科技大学学报, 2014, 34(6):71−75. doi: 10.3969/j.issn.1673-923X.2014.06.014

    Gao X, Ding G J, Zhai S S, et al. Spatial distribution of root biomass of Pinus massoniana plantations under different planting densities[J]. Journal of Central South University of Forestry & Technology, 2014, 34(6): 71−75. doi: 10.3969/j.issn.1673-923X.2014.06.014
    [20]
    陈硕芃, 王韶仲, 王政权, 等. 密度结构对大青川红松人工林细根生物量与根长密度的影响[J]. 森林工程, 2013, 29(4):1−7. doi: 10.3969/j.issn.1001-005X.2013.04.001

    Chen S P, Wang S Z, Wang Z Q, et al. Influence of stand density on fine root standing biomass and length density in Korean Pine (Pinus koraiensis) plantation in Daqingchuan Forest Farm, Xiaoxing ’an Mountain, China[J]. Forest Engineering, 2013, 29(4): 1−7. doi: 10.3969/j.issn.1001-005X.2013.04.001
    [21]
    闫美芳, 王璐, 郭楠, 等. 黄土高原杨树人工林的细根生物量与碳储量研究[J]. 中国农学通报, 2015, 31(35):146−151. doi: 10.11924/j.issn.1000-6850.casb15080071

    Yan M F, Wang L, Guo N, et al. Study on fine root biomass and C stock in a poplar plantation in Loess Plateau[J]. Chinese Agricultural Science Bulletin, 2015, 31(35): 146−151. doi: 10.11924/j.issn.1000-6850.casb15080071
    [22]
    Chang R Y, Yao X L, Wang S. Effects of soil physicochemical properties and stand age on fine root biomass and vertical distribution of plantation forests in the Loess Plateau of China[J]. Ecological Research, 2012, 27(4): 827−836. doi: 10.1007/s11284-012-0958-0
    [23]
    燕亚飞, 田野, 方升佐, 等. 不同密度杨树人工林的外源无机氮输入及土壤无机氮库研究[J]. 南京林业大学学报(自然科学版), 2015, 58(4):69−74.

    Yan Y F, Tian Y, Fang S Z, et al. External nitrogen input and soil inorganic nitrogen pool in different stands of poplar plantations[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 58(4): 69−74.
    [24]
    谷加存, 王政权, 韩有志, 等. 采伐干扰对帽儿山地区天然次生林土壤表层温度空间异质性的影响[J]. 应用生态学报, 2006, 17(12):2248−2254. doi: 10.3321/j.issn:1001-9332.2006.12.004

    Gu J C, Wang Z Q, Han Y Z, et al. Effects of cutting intensity on spatial heterogeneity of topsoil temperature in secondary forest in Maoershan region of Heilongjiang Province[J]. Chinese Journal of Applied Ecology, 2006, 17(12): 2248−2254. doi: 10.3321/j.issn:1001-9332.2006.12.004
    [25]
    Wang L, Long H L, Guo H Y, et al. Spatial distribution and accumulation of nutrients in Eucalyptus grandis under different stand densities[J]. Agricultural Science & Technology, 2017, 6: 112−116.
    [26]
    Iorio A D, Montagnoli A, Scippa G S, et al. Fine root growth of Quercus pubescens seedlings after drought stress and fire disturbance[J]. Environmental & Experimental Botany, 2011, 74(1): 272−279.
    [27]
    Mao Y E, Hai-Liang X U, Wang X F, et al. Spatial distribution characteristics of root system of Populus euphratica in the algan transection of the lower tarim river[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(4): 801−807.
    [28]
    Persson H. Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden[J]. Oikos, 1980, 34(1): 77−87. doi: 10.2307/3544552
    [29]
    Ayoupu M, Chen Y N, Li W H, et al. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011, 31(6): 1449−1458.
    [30]
    Song X, Gao X, Zhao X, et al. Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China[J]. Agricultural Water Management, 2017, 184: 170−177. doi: 10.1016/j.agwat.2017.02.005
    [31]
    Geng Y Q, Shan H C, Tan X, et al. Soils in forest gaps in artificial coniferous forests[J]. Journal of Beijing Forestry University, 2002, 24(4): 16−19.
    [32]
    Hendrick R L, Pregitzer K S. Patterns of fine root mortality in two sugar maple forests[J]. Nature, 1993, 361: 59−61. doi: 10.1038/361059a0
    [33]
    Xu H, Bi H, Gao L, et al. Distribution and morphological variation of fine root in a walnut-soybean intercropping system in the Loess Plateau of China[J]. International Journal of Agriculture and Biology, 2013, 15(5): 998−1002.
    [34]
    Wang P, Shu M, Mou P, et al. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies[J]. Ecology & Evolution, 2018, 8(6): 3367.
    [35]
    李洪波, 薛慕瑶, 林雅茹, 等. 土壤养分空间异质性与根系觅食作用: 从个体到群落[J]. 植物营养与肥料学报, 2013, 19(4):995−1004. doi: 10.11674/zwyf.2013.0428

    Li H B, Xue M Y, Lin Y R, et al. Spatial heterogeneity of soil nutrients and root foraging: from individual to community[J]. Plant Nutrition and Fertilizer Science, 2013, 19(4): 995−1004. doi: 10.11674/zwyf.2013.0428
    [36]
    张国盛, 吴国玺, 王林和, 等. 毛乌素沙地臭柏(Sabina vulgaris)和油蒿(Artemisia ordosica)群落的细根分布特征[J]. 生态学报, 2009, 29(1):18−27. doi: 10.3321/j.issn:1000-0933.2009.01.003

    Zhang G S, Wu G X, Wang L H, et al. Fine root distribution characteristics of Sabina vulgaris and Artemisia ordosica communities in the Mu Us Sandland of Inner Mongolia, China[J]. Acta Ecologica Sinica, 2009, 29(1): 18−27. doi: 10.3321/j.issn:1000-0933.2009.01.003
    [37]
    Lai Z, Zhang Y, Liu J, et al. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China[J]. Forest Ecology & Management, 2016, 359(14): 381−388.
    [38]
    Noh N J, Kim C, Sang W B, et al. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities[J]. Journal of Plant Ecology, 2013, 6(5): 368−379. doi: 10.1093/jpe/rtt007
    [39]
    Teskey R O, Hinckley T M. Influence of temperature and water potential on root growth of white oak[J]. Physiologia Plantarum, 2010, 52(3): 363−369.
    [40]
    Pregitzer K S, Zak D R, Curtis P S, et al. Atmospheric CO2, soil nitrogen and turnover of fine roots[J]. New Phytologist, 2010, 129(4): 579−585.
    [41]
    Mccormack M L, Guo D. Impacts of environmental factors on fine root lifespan[J]. Frontiers in Plant Science, 2014, 5(5): 205.
    [42]
    Joslin J D, Wolfe M H, Hanson P J. Factors controlling the timing of root elongation intensity in a mature upland oak stand[J]. Plant & Soil, 2001, 228(2): 201−212.
    [43]
    王韦韦, 黄锦学, 陈锋, 等. 树种多样性对亚热带米槠林细根生物量和形态特征的影响[J]. 应用生态学报, 2014, 25(2):318−324.

    Wang W W, Huang J X, Chen F, et al. Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 318−324.
    [44]
    王祖华, 李瑞霞, 郝俊鹏, 等. 间伐对杉木人工林不同根序细根形态的影响[J]. 东北林业大学学报, 2011, 39(6):13−15. doi: 10.3969/j.issn.1000-5382.2011.06.005

    Wang Z H, Li R X, Hao J P, et al. Effects of thinning on fine root morphology in Chinese fir plantations[J]. Journal of Northeast Forestry University, 2011, 39(6): 13−15. doi: 10.3969/j.issn.1000-5382.2011.06.005
    [45]
    贺志龙, 张芸香, 郭跃东, 等. 不同密度华北落叶松林天然林土壤养分特征研究[J]. 生态环境学报, 2017, 26(1):47−52.

    He Z L, Zhang Y X, Guo Y D, et al. Soil nutrient characteristics of natural Larix gmelinii forests with different densities[J]. Journal of Ecological Environment, 2017, 26(1): 47−52.
    [46]
    Curt T, Coll L, Prévosto B, et al. Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition[J]. Annals of Forest Science, 2005, 62(1): 51−60. doi: 10.1051/forest:2004092
  • Related Articles

    [1]Cai Zhiyong, Sun Long, Hu Haiqing, Zhao Nan, Sun Jiabao. Dynamic prediction of forest litter load based on litter decomposition rate[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230183
    [2]Guan Cheng, Xin Zhenbo, Liu Jinhao, Zhang Houjiang, Zhou Jianhui, Li Huan, Liu Suyang. Modal sensitivity and vibration mode of full-size oriented strand board panel under three boundary conditions[J]. Journal of Beijing Forestry University, 2021, 43(12): 105-115. DOI: 10.12171/j.1000-1522.20210264
    [3]WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437
    [4]ZHENG Jun-qiang, GUO Rui-hong, LI Dong-sheng, LI Dong, LI Jin-gong, ZHU Bao-kun, HAN Shi-jie. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 21-28. DOI: 10.13332/j.1000-1522.20150464
    [5]ZHANG Qin, LIN Tian xi, WANG Gui chun, SUN Guo wen, FAN Xiu hua. Decomposition of mixed litter of Pinus koraiensis, Quercus mongolica and Acer mono[J]. Journal of Beijing Forestry University, 2014, 36(6): 106-111. DOI: 10.13332/j.cnki.jbfu.2014.06.020
    [6]LIU Zhen-bo, LI Si-dan, LIU Yi-xing, HUANG Ying-lai. Vibration modal analysis of resonance board of Pi-pa.[J]. Journal of Beijing Forestry University, 2012, 34(2): 125-132.
    [7]HU Chuan-shuang, WEN Wei, ZHOU Hai-bin, YUN Hong. Detection of simulated defects of wood beams by using the differences of local modal flexibility[J]. Journal of Beijing Forestry University, 2011, 33(5): 122-125.
    [8]WANG Xiong-bin, GU Jian-cai, ZHU Jian-gang, LU Shao-wei, , YU Xin-xiao, LI Yong-jie. Entropy calculation and its application in forest biomass distribution. [J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 160-164.
    [9]FAN Hou-bao, , LIU Wen-fei, YANG Yue-lin, ZHANG Zi-wen, CAO Hanyang, XU Lei. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13.
    [10]LIU Qiang, PENG Shao-lin, BI Hua, ZHANG Hong-yi, LI Zhi-an, MA Wen-hui, LI Ni-ya. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests.[J]. Journal of Beijing Forestry University, 2005, 27(1): 24-32.

Catalog

    Article views (2113) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return