• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030
Citation: He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030

Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China

More Information
  • Received Date: January 19, 2019
  • Revised Date: May 12, 2019
  • Available Online: September 11, 2019
  • Published Date: August 31, 2019
  • ObjectiveTo study the succession process of degraded forest ecosystems recovered from the interference of fire and logging in the Inner Mongolia Daxing’anling forest area of northern China, a general stand biomass model was established to analyze the forest biomass characteristics and figure out the effects of stand, topography and climate factors on stand biomass.
    MethodBiomass was calculated from the published biomass equations based on corresponding diameter at breast (DBH) and tree height (H) measured in the field. Variance analysis was used to determine the significance of stand, topographic and climatic factors, restoration time and interference type to the stand biomass. General linear model method was used to establish multivariate linear model of stand forest biomass and the forest biomass characteristics of degraded forest ecosystem were compared among different habitats.
    Result(1) The forest biomass in different recovery stages of forest ecosystems was significantly different. The forest biomass organic allocation was also significantly different in a way that the maximum proportion of biomass mostly occurred in 4−8 cm, 14 cm and 18−26 cm diameter class. (2) Variance analysis showed that restoration time, interference type, dominant tree species and altitude had significant effects on stand biomass, while the two main climatic factors and climatic factors had no effect on stand biomass. The coefficient of determination for two stand biomass models was above 0.85 and could be used to predict forest biomass in degraded forest ecosystem.
    ConclusionThere are large differences in forest biomass in varied degraded stages of forest ecosystems. The forest biomass organic and diameter allocation are affected by interference type and restoration time. The stand biomass is proportional to restoration time and altitude. The interference type and forest type will affect the stand biomass. The research results can provide reference for forest biomass prediction and forest carbon pool research in Daxing’anling forest area.
  • [1]
    Tang S Z, Liu S R. Conservation and sustainability of natural forests in China[J]. Review of China Agricultural Science and Technology, 2000, 2(1): 42−46.
    [2]
    夏自谦, 滕秀玲. 世界森林资源现状及前景展望[J]. 北京林业大学学报(社会科学版), 2003, 2(3):24−28. doi: 10.3969/j.issn.1671-6116.2003.03.006

    Xia Z Q, Teng X L. Status quo and prospect of world forest resources[J]. Journal of Beijing Forestry University (Social Sciences), 2003, 2(3): 24−28. doi: 10.3969/j.issn.1671-6116.2003.03.006
    [3]
    Dobson A P, Bradshaw A D, Baker A J M. Hopes for the future: restoration ecology and conservation biology[J]. Science, 1997, 277: 515−522. doi: 10.1126/science.277.5325.515
    [4]
    李俊清. 森林生态学[M]. 北京: 高等教育出版, 2010.

    Li J Q. Forest ecology[M]. Beijing: Higher Education Press, 2010.
    [5]
    徐化成. 中国大兴安岭森林[M]. 北京: 科学出版社, 1998.

    Xu H C. Daxing’anling forest, China[M]. Beijing: Science Press, 1998.
    [6]
    郑焕能, 温广玉. 林火灾变阈值[J]. 火灾科学, 1999, 8(3):1−5.

    Zheng H N, Wen G Y. Forest fire catastrophe and its threshold[J]. Fire Safety Science, 1999, 8(3): 1−5.
    [7]
    Houghton R A. Converting terrestrial ecosystems from sources to sinks of carbon[J]. Arnbio, 1996, 25(4): 267−272.
    [8]
    Hornbeck J W, Smith C T, Martin C W, et al. Effects of intensive harvesting on nutrient capitals of three forest types in New England[J]. Forest Ecology and Management, 1990, 30(1−4): 55−64. doi: 10.1016/0378-1127(90)90126-V
    [9]
    张厚华, 傅德志, 孙谷畴. 森林植被恢复重建的理论基础[J]. 北京林业大学学报, 2004, 26(1):97−99. doi: 10.3321/j.issn:1000-1522.2004.01.020

    Zhang H H, Fu D Z, Sun G C. Theoretical fundamentals of restoration and reconstruction of degraded forest vegetation[J]. Journal of Beijing Forestry University, 2004, 26(1): 97−99. doi: 10.3321/j.issn:1000-1522.2004.01.020
    [10]
    Amiro B. Net primary productivity following forest fire for Canadian ecoregions[J]. Canadian Journal of Forest Research, 2000, 30(30): 939−947.
    [11]
    Wang C, Gower S T, Wang Y, et al. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in northeastern China[J]. Global Change Biology, 2010, 7(6): 719−730.
    [12]
    丛燕, 魏荣华, 袁强. 黑河地区阔叶林和白桦落叶松林火烧迹地生物量动态变化的研究[J]. 林业科技, 2011, 36(2):17−19. doi: 10.3969/j.issn.1673-3290.2011.02.03

    Cong Y, Wei R H, Yuan Q. Research of the biomass dynamics in burned areas of broad-leaved forest and birch and larch forest in Heihe Area[J]. Forestry Science & Technology, 2011, 36(2): 17−19. doi: 10.3969/j.issn.1673-3290.2011.02.03
    [13]
    解伏菊, 肖笃宁, 李秀珍, 等. 大兴安岭北坡火烧迹地森林景观恢复及其影响因子: 以郁闭度指标为例[J]. 应用生态学报, 2005, 16(9):1711−1718. doi: 10.3321/j.issn:1001-9332.2005.09.025

    Xie F J, Xiao D N, Li X Z, et al. Forest landscape restoration and its affecting factors in burned area of northern Great Xing’an Mountains: taking forest coverage as an example[J]. Chinese Journal of Applied Ecology, 2005, 16(9): 1711−1718. doi: 10.3321/j.issn:1001-9332.2005.09.025
    [14]
    王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭主要森林生态系统生物量分配特征[J]. 生态学杂志, 2014, 33(6):1437−1444.

    Wang X L, Chang Y, Chen H, et al. Biomass allocation characteristics of the main forest ecosystems in the Great Xing’an Mountains, Heilongjiang Province[J]. Chinese Journal of Ecology, 2014, 33(6): 1437−1444.
    [15]
    孙伟迪. 乌尔旗汗林业局森林碳储量分布特征研究[J]. 内蒙古林业调查设计, 2017, 40(6):96−100, 102.

    Sun W D. Study on distribution characteristics of forest carbon storage in Wuerqihan Forestry Bureau[J]. Inner Mongolia Forestry Survey and Design, 2017, 40(6): 96−100, 102.
    [16]
    孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. Beijing: China Forestry Publishing House, 2006.
    [17]
    Wang T, Wang G, Innes J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448−458. doi: 10.15302/J-FASE-2017172
    [18]
    Weiskittel A R, Crookston N L, Radtke P J. Linking climate, gross primary productivity, and site index across forests of the western United States[J]. Canadian Journal of Forest Research, 2011, 41(8): 1710−1721. doi: 10.1139/x11-086
    [19]
    国家林业局. 国家森林资源连续清查技术规定[S]. 北京: 国家林业局, 2014.

    State Forestry Administration. National forest resources continuous inventory technical regulations[S]. Beijing: State Forestry Administration, 2014.
    [20]
    国家林业局. LY/T 2655—2016立木生物量模型及碳计量参数: 云杉[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. LY/T 2655—2016, Tree biomass models and related parameters to carbon accounting for Picea asperata[S]. Beijing: China Forestry Publishing House, 2017.
    [21]
    国家林业局. LY/T 2654—2016立木生物量模型及碳计量参数: 落叶松[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. LY/T 2654—2016, Tree biomass models and related parameters to carbon accounting for Larix gmelinii[S]. Beijing: China Forestry Publishing House, 2017.
    [22]
    国家林业局. LY/T 2659—2016, 立木生物量模型及碳计量参数—桦树[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. LY/T 2659—2016, Tree biomass models and related parameters to carbon accounting for Betula platyphylla[S]. Beijing: China Forestry Publishing House, 2017.
    [23]
    李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
    [24]
    唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算: ForStat教程[M]. 北京: 科学出版社, 2009.

    Tang S Z, Lang K J, Li H K.Statistics and biomathematical models[M]. Beijing: Science Press, 2009.
    [25]
    Kutner M H, Nachtsheim C J, Neter J, et al. Applied linear statistical models[M]. Boston: McGraw-Hill Irwin, 2005.
    [26]
    Farrar D E, Glauber R R. Multicollinearity in regression analysis: the problem revisited[J]. Review of Economics and Statistics, 1967, 49(1): 92−107. doi: 10.2307/1937887
    [27]
    Mcintyre S H, Montgomery D B, Srinivasan V, et al. Evaluating the statistical significance of models developed by stepwise regression[J]. Journal of Marketing Research, 1983, 20(1): 1−11. doi: 10.1177/002224378302000101
    [28]
    Cornell J. Classical and modern regression with applications[J]. Technometrics, 1987, 29(3): 2.
    [29]
    曾锋, 张金池. 重金属在森林生态系统中的迁移规律研究进展[J]. 世界林业研究, 2001, 14(2):16−22.

    Zeng F, Zhang J C. Advances in the research on movement pattern of heavy metal ions in forest ecosystem[J]. World Forestry Research, 2001, 14(2): 16−22.
    [30]
    范兆飞, 徐化成, 于汝元. 大兴安岭北部兴安落叶松种群年龄结构及其与自然干扰关系的研究[J]. 林业科学, 1992, 28(1):2−11.

    Fan Z F, Xu H C, Yu R Y. A study on the species group age structure of Larix Gmelini population and its relation to disturbance on the North Daxing’anling Mountains[J]. Scientia Silvae Sinicae, 1992, 28(1): 2−11.
    [31]
    李卓凡. 兴安落叶松林生物量与碳储量的研究[D]. 呼和浩特: 内蒙古农业大学, 2013.

    Li Z F. Biomass and carbon storage of the Larix gmelinii forest’s research[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
    [32]
    王丽红, 辛颖, 邹梦玲, 等. 大兴安岭火烧迹地植被恢复中植物多样性与生物量分配格局[J]. 北京林业大学学报, 2015, 37(12):41−47.

    Wang L H, Xin Y, Zou M L, et al. Plants diversity and biomass distribution of vegetation restoration in burned area of Great Xing’an Mountains[J]. Journal of Beijing Forestry University, 2015, 37(12): 41−47.
    [33]
    Brown I F, Martinelli L A, Thomas W W, et al. Uncertainty in the biomass of Amazonian forests: an example from Rondonia, Brazil[J]. Forest Ecology and Management, 1995, 75(1−3): 175−189.
    [34]
    Condés S, Roberedo F G. An empirical mixed model to quantify climate influence on the growth of Pinus halepeensis Mill. stands in southeastern Spain[J]. Forest Ecology and Management, 2012, 284(15): 59−68.
    [35]
    王轶夫. 基于神经网络的森林生物量估测模型研究[D]. 北京: 北京林业大学, 2013.

    Wang Y F. The study of forest biomass estimation model based on neural network[D]. Beijing: Beijing Forestry University, 2013.
    [36]
    Taylor K D. Fire history of a sequoia-mixed conifer forest[J]. Ecology, 1979, 60(1): 129−142. doi: 10.2307/1936475
    [37]
    Reed R A, Finley M E, Romme W H, et al. Above-ground net primary production and leaf area index in early postfire vegetation in Yellowstone National Park[J]. Ecosystems, 1999, 2(1): 88−94. doi: 10.1007/s100219900061
    [38]
    张玉红, 覃炳醒, 孙铭隆, 等. 林火对大兴安岭典型林型林下植被与土壤的影响[J]. 北京林业大学学报, 2012, 34(2):7−13.

    Zhang Y H, Qin B X, Sun M L, et al. Impact of forest fire on understory vegetation and soil in typical forest types of Daxing’an Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(2): 7−13.
    [39]
    郑丽凤, 周新年, 李丹, 等. 森林采伐对闽北天然次生林碳储量及其动态的影响[J]. 安全与环境学报, 2013, 13(6):162−167.

    Zheng L F, Zhou X N, Li D, et al. Impact of harvesting intensity of the natural secondary forestry on the carbon stocks reduction in northern Fujian[J]. Journal of Safety and Environment, 2013, 13(6): 162−167.
    [40]
    胡海清, 罗碧珍, 魏书精, 等. 小兴安岭7种典型林型林分生物量碳密度与固碳能力[J]. 植物生态学报, 2015, 39(2):140−158. doi: 10.17521/cjpe.2015.0014

    Hu H Q, Luo B Z, Wei S J, et al. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing ’an Mountains, China[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 140−158. doi: 10.17521/cjpe.2015.0014
    [41]
    He Y J, Qin L, LI Z Y, et al. Carbon storage capacity of monoculture and mixed-species plantation in subtropical China[J]. Forest Ecology and Management, 2013, 295(1): 193−198.
    [42]
    Fan H B, Liu W F, Wu J P, et al. Ecosystem carbon pools in mixed stands of hardwood species and Masson pine[J]. Journal of Tropical Forest Science, 2013, 25(2): 154−165.
    [43]
    李江, 陈宏伟, 冯弦. 云南热区几种阔叶人工林C储量的研究[J]. 广西植物, 2003, 23(4):294−298.

    Li J, Chen H W, Feng X. Carbon stock and rate of carbon sequestration assessment of hardwood plantations in tropical Yunnan, China[J]. Guihaia, 2003, 23(4): 294−298.
  • Cited by

    Periodical cited type(3)

    1. 黄康庭,周娟,陈晓龙,艾辉辉,梁明伟,王荣洁,余平福. 广西珍贵乡土树种人工林林下植物的多样性. 桉树科技. 2025(01): 49-56 .
    2. 符航,谭国华,刘玮,蔡奇良,王琼,潘峰. 基于CiteSpace和VOSviewer软件的城市土壤食物网研究趋势分析. 生物灾害科学. 2025(01): 51-65 .
    3. 江姗,魏天兴,范德卉,于欢,叶小曼,谢宇,李世杰. 晋西黄土区沟谷不同部位植物多样性. 北京林业大学学报. 2024(06): 20-27 . 本站查看

    Other cited types(4)

Catalog

    Article views (2089) PDF downloads (101) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return