Citation: | Zhang Yong, Hu Xiaoqing, Li Dou, Liu Xuemei. Cloning the promoter of BpSPL8 from Betula platyphylla and overexpression of BpSPL8 gene affecting drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2019, 41(8): 67-75. DOI: 10.13332/j.1000-1522.20190137 |
[1] |
Cardon G, Hohmann S, Klein J, et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 1999, 237(1): 91−104. doi: 10.1016/S0378-1119(99)00308-X
|
[2] |
Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 2005, 8(4): 517−527. doi: 10.1016/j.devcel.2005.01.018
|
[3] |
Wu G, Poethig R S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539−3547. doi: 10.1242/dev.02521
|
[4] |
Wang J W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4): 738−749. doi: 10.1016/j.cell.2009.06.014
|
[5] |
Yu N, Cai W J, Wang S, et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(7): 2322−2335. doi: 10.1105/tpc.109.072579
|
[6] |
Jung J H, Seo P J, Kang S K, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Molecular Biology, 2011, 76(1−2): 35−45. doi: 10.1007/s11103-011-9759-z
|
[7] |
Shikata M, Koyama T, Mitsuda N, et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant and Cell Physiology, 2009, 50(12): 2133−2145. doi: 10.1093/pcp/pcp148
|
[8] |
Schwarz S, Grande A V, Bujdoso N, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(1−2): 183−195. doi: 10.1007/s11103-008-9310-z
|
[9] |
Yamasaki H, Hayashi M, Fukazawa M, et al. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. Plant Cell, 2009, 21(1): 347−361. doi: 10.1105/tpc.108.060137
|
[10] |
Stone J M, Liang X, Nekl E R, et al. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant Journal, 2005, 41(5): 744−754. doi: 10.1111/tpj.2005.41.issue-5
|
[11] |
Chao L M, Liu Y Q, Chen D Y, et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Molecular Plant, 2017, 10(5): 735−748. doi: 10.1016/j.molp.2017.03.010
|
[12] |
Unte U S, Sorensen A M, Pesaresi P, et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell, 2003, 15(4): 1009−1019. doi: 10.1105/tpc.010678
|
[13] |
Zhang Y, Schwarz S, Saedler H, et al. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(3): 429−439. doi: 10.1007/s11103-006-9099-6
|
[14] |
Xing S, Salinas M, Hohmann S, et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell, 2010, 22(12): 3935−3950. doi: 10.1105/tpc.110.079343
|
[15] |
Gou J, Debnath S, Sun L, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa[J]. Plant Biotechnology Journal, 2018, 16(4): 951−962. doi: 10.1111/pbi.2018.16.issue-4
|
[16] |
李双, 苏艳艳, 王厚领, 等. 胡杨miR1444b在拟南芥中正调控植物抗旱性[J]. 北京林业大学学报, 2018, 40(4):1−9.
Li S, Su Y Y, Wang H L, et al. Populus euphratica miR1444b positively regulates plants response to drought stress in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 1−9.
|
[17] |
姚琨, 练从龙, 王菁菁, 等. 胡杨PePEX11基因参与调节盐胁迫下拟南芥的抗氧化能力[J]. 北京林业大学学报, 2018, 40(5):19−28.
Yao K, Lian C L, Wang J J, et al. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19−28.
|
[18] |
Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell, 2006, 18(5): 1292−1309. doi: 10.1105/tpc.105.035881
|
[19] |
Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis[J]. Plant Journal, 1997, 12(3): 557−569.
|
[20] |
李蕾蕾, 孙丰坤, 李天宇, 等. 白桦BpGT14基因启动子克隆及表达活性分析[J]. 北京林业大学学报, 2016, 38(7):16−24.
Li L L, Sun F K, Li T Y, et al. Cloning and activity analysis of BpGT14 gene promoter in Betula platyphylla[J]. Journal of Beijing Forestry University, 2016, 38(7): 16−24.
|
[21] |
张一南, 王洋, 张会龙, 等. 过表达胡杨PeRIN4基因拟南芥提高质膜H+-ATPase活性和耐盐性[J]. 北京林业大学学报, 2017, 39(11):1−8.
Zhang Y N, Wang Y, Zhang H L, et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1−8.
|
[22] |
Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO Journal, 1987, 6(13): 3901−3907. doi: 10.1002/embj.1987.6.issue-13
|
[23] |
Liu C, Guan M X, Hu X Q, et al. Complex regulatory network of Betula BplSPL8 in planta[J]. Journal of Forestry Research, 2017, 28(5): 881−889. doi: 10.1007/s11676-017-0372-0
|
[24] |
Yu X, Liu Y, Wang S, et al. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 613−627. doi: 10.1007/s00299-015-1907-5
|
[25] |
牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21):7333−7341.
Niu S Z, Song Q F, Fan W G, et al. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333−7341.
|
[26] |
Yu N, Niu Q W, Ng K H, et al. The role of miR156/SPLs modules in Arabidopsis lateral root development[J]. Plant Journal, 2015, 83(4): 673−685. doi: 10.1111/tpj.12919
|
[27] |
Gao R, Wang Y, Gruber M Y, et al. miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS-LIKE 79[J/OL]. Frontiers in Plant Science, 2017, 8 (2017−01−04) [2018−06−20]. https://doi.org/10.3389/fpls.2017.02226.
|
[28] |
刘闯. 18个白桦SPLs基因的鉴定及BpSPL8基因的功能分析[D]. 哈尔滨: 东北林业大学, 2017.
Liu C. Identification of 18 SPL gene family members and functional analysis of BpSPL8 in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2017.
|
[29] |
Saini S, Sharma I, Kaur N, et al. Auxin: a master regulator in plant root development[J]. Plant Cell Reports, 2013, 32(6): 741−757. doi: 10.1007/s00299-013-1430-5
|
[30] |
Hao Y J, Wei W, Song Q X, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal, 2011, 68(2): 302−313. doi: 10.1111/j.1365-313X.2011.04687.x
|
[31] |
Chen D, Richardson T, Chai S, et al. Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat[J]. Plant and Cell Physiology, 2016, 57(10): 2076−2090. doi: 10.1093/pcp/pcw126
|
[32] |
Laplaze L, Benkova E, Casimiro I, et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation[J]. Plant Cell, 2007, 19(12): 3889−3900. doi: 10.1105/tpc.107.055863
|
[33] |
Loutfy N, El-Tayeb M A, Hassanen A M, et al. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum)[J]. Journal of Plant Research, 2012, 125(1): 173−184. doi: 10.1007/s10265-011-0419-9
|
[34] |
Ivanchenko M G, Muday G K, Dubrovsky J G. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana[J]. Plant Journal, 2008, 55(2): 335−347. doi: 10.1111/tpj.2008.55.issue-2
|
[35] |
Ruiz-Lozano J M, Aroca R, Zamarreno A M, et al. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J]. Plant Cell and Environment, 2016, 39(2): 441−452. doi: 10.1111/pce.v39.2
|
[36] |
Sanchez-Romera B, Ruiz-Lozano J M, Zamarreno A M, et al. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought[J]. Mycorrhiza, 2016, 26(2): 111−122. doi: 10.1007/s00572-015-0650-7
|
[37] |
Rowe J H, Topping J F, Liu J, et al. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin[J]. New Phytologist, 2016, 211(1): 225−239. doi: 10.1111/nph.13882
|
[38] |
赵婉莹, 于太飞, 杨军峰, 等. 大豆GmbZIP16的抗旱功能验证及分析[J]. 中国农业科学, 2018, 51(15):6−18.
Zhao W Y, Yu T F, Yang J F, et al. Verification and analyses of soybean GmbZIP16 gene resistance to drought[J]. Scientia Agricultura Sinica, 2018, 51(15): 6−18.
|
1. |
兰宇铭. 基于CiteSpace的国内红松研究趋势与热点分析. 辽宁林业科技. 2022(01): 33-39 .
![]() | |
2. |
都津铭,张萍,高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性. 现代食品科技. 2021(10): 87-95 .
![]() | |
3. |
李晓娇,李悦,董锦,张化艳,宋志姣. 云南松针精油的提取及抗氧化活性研究. 中国食品添加剂. 2020(07): 27-35 .
![]() | |
4. |
龚婷,张敏,王海珠,宗学凤,廖林正. 大叶茜草精油挥发性物质抑菌及抗氧化活性研究. 西南师范大学学报(自然科学版). 2019(06): 54-59 .
![]() | |
5. |
岳鑫,包怡红. 基于荧光及紫外光谱法对红松种鳞多酚与乳清蛋白相互作用的研究. 现代食品科技. 2019(07): 114-120 .
![]() | |
6. |
郭奇泳,张艳,石茂军,张琪瑶,吴聪,赵玉红. 烘焙对红松种籽衣活性成分含量及抗氧化活性的影响. 现代食品科技. 2018(12): 159-166+158 .
![]() | |
7. |
樊梓鸾,张艳东,张华,王振宇,包怡红. 红松松针精油抗氧化和抑菌活性研究. 北京林业大学学报. 2017(08): 98-103 .
![]() | |
8. |
樊梓鸾,陈凯莉,高芯,包怡红. 五种松针多酚的提取优化及抗氧化活性研究. 现代食品科技. 2017(08): 211-220 .
![]() |