• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hong Wenjuan, Hao Zhaoxiang, Liu Kangjia, Luo Hua, Bi Runxia, Yuan Zhaohe, Zong Shixiang, Wang Jun. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum[J]. Journal of Beijing Forestry University, 2019, 41(8): 38-47. DOI: 10.13332/j.1000-1522.20190167
Citation: Hong Wenjuan, Hao Zhaoxiang, Liu Kangjia, Luo Hua, Bi Runxia, Yuan Zhaohe, Zong Shixiang, Wang Jun. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum[J]. Journal of Beijing Forestry University, 2019, 41(8): 38-47. DOI: 10.13332/j.1000-1522.20190167

Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum

More Information
  • Received Date: March 27, 2019
  • Revised Date: May 10, 2019
  • Available Online: June 11, 2019
  • Published Date: July 31, 2019
  • Objective The number of polymorphic SSR markers developed through cDNA library is limited. In order to promote studies on genetic diversity, genetic mapping and variety identification, it is necessary to develop molecular marker loci.
    Method In this study, SSRs with 1−6 nucleotide repeats were searched from the published whole genome sequences of Punica granatum using MISA and the characterization of SSR sequences and their polymorphisms were analyzed.
    Result (1) A total of 146 445 SSR loci were detected in whole genome sequences of Punica granatum. Then content of mono-nucleotide repeat SSRs was the highest, accounting for 51.95%; in contrast, the content of hexa-nucleotide repeat SSRs was the lowest, only 0.38%. In all SSR sequences, most of bases were A/T, showing a bias in SSR sequences. (2) The range of SSR length ranged from 10 to 252 bp, with an average of 15.48 bp. The SSR length among different types of SSRs varied a lot, and the abundance of SSR sequences tended to decrease with the increase of repeat number. (3) In designed 140 pairs of primers including different types of SSRs, valid fragments could be produced with 119 pairs in 12 germplasms of Punica granatum and 41 pairs could produce polymorphic fragments with 0.007−0.566 polymorphic information content (PIC). We further screened 15 pairs of primers with polymorphic and stable fragments, which detected 44 alleles in these germplasms of Punica granatum, with average of 2.933 3 alleles per SSR locus.
    Conclusion SSR markers can be developed in large-scale based on whole genome sequences of Punica granatum and a large number of SSR primers also can be identified for genetic diversity analysis, genetic mapping and variety identification. This study provides lots of SSR information and marker resources for researching genetics and breeding of Punica granatum.
  • [1]
    苑兆和, 吕菲菲. 石榴文化艺术与功能利用[M]. 北京: 中国农业出版社, 2018.

    Yuan Z H, Lü F F. Culture, art and functional utilization of pomegranate[M]. Beijing: China Agriculture Press, 2018.
    [2]
    赵丽娜, 侯乐峰, 郝兆祥, 等. 遗传标记在石榴种质资源研究中的应用[J]. 中国农学通报, 2015, 31(4):135−140.

    Zhao L N, Hou L F, Hao Z X, et al. Application of genetic markers in Punica granatum germplasm research[J]. Chinese Agricultural Science Bulletin, 2015, 31(4): 135−140.
    [3]
    黄秦军, 苏晓华, 张香华. SSR分子标记与林木遗传育种[J]. 世界林业研究, 2002, 15(3):14−21. doi: 10.3969/j.issn.1001-4241.2002.03.003

    Huang Q J, Su X H, Zhang X H. Microsatellite markers and its application in tree genetics and breeding[J]. World Forestry Research, 2002, 15(3): 14−21. doi: 10.3969/j.issn.1001-4241.2002.03.003
    [4]
    Ebrahimi S, Sayed-Tabatabaei B, Sharifnabi B. Microsatellite isolation and characterization in pomegranate (Punica granatum L.)[J]. Iranian Journal of Biotechnology, 2010, 8(3): 156−163.
    [5]
    Parvaresh M, Talebi M, Sayed-Tabatabaei B. Molecular diversity and genetic relationship of pomegranate (Punica granatum L.) genotypes using microsatellite markers[J]. Scientia Horticulturae, 2012, 138: 244−252. doi: 10.1016/j.scienta.2012.02.038
    [6]
    杨健. 基于EST-SSR分子标记的中国石榴遗传多样性研究[D]. 合肥: 安徽农业大学, 2015.

    Yang J. Genetic analysis of pomegranate in China based on EST-SSR markers[D].Hefei: Anhui Agricultural University, 2015.
    [7]
    Yuan Z, Fang Y, Zhang T, et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology[J]. Plant Biotechnology Journal, 2018, 6(7): 1363−1374.
    [8]
    Marshall T C, Slate J, Kruuk L E B, et al. Statistical confidence for likelihood-based paternity inference in natural populations[J]. Molecular Ecology, 1998, 7(5): 639−655. doi: 10.1046/j.1365-294x.1998.00374.x
    [9]
    Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing[J]. Nature Review Genetics, 2011, 12: 499−510. doi: 10.1038/nrg3012
    [10]
    吴敏, 杜红岩, 乌云塔娜, 等. 杜仲基因组微卫星特征及SSR标记开发[J]. 林业科学研究, 2015, 28(3):387−393. doi: 10.3969/j.issn.1001-1498.2015.03.013

    Wu M, Du H Y, Wuyuntana, et al. Characterization of genomic microsatellites and development of SSR markers of Eucommia ulmoides[J]. Forest Research, 2015, 28(3): 387−393. doi: 10.3969/j.issn.1001-1498.2015.03.013
    [11]
    马秋月, 戴晓港, 陈赢男, 等. 枣基因组的微卫星特征[J]. 林业科学, 2013, 49(12):81−87.

    Ma Q Y, Dai X G, Chen Y N, et al. Characterization of microsatellites in the genome of Ziziphus jujuba[J]. Scientia Silvae Sinicae, 2013, 49(12): 81−87.
    [12]
    Karaoglu H, Lee C M Y, Meyer W. Survey of simple sequence repeats in completed fungal genomes[J]. Molecular Biology & Evolution, 2005, 22: 639−649.
    [13]
    郑燕, 张耿, 吴为人. 禾本科植物微卫星序列的特征分析和比较[J]. 基因组学与应用生物学, 2011, 30(5):513−520. doi: 10.3969/gab.030.000513

    Zheng Y, Zhang G, Wu W R. Characterization and comparison of microsatellites in Gramineae[J]. Genomics and Applied Biology, 2011, 30(5): 513−520. doi: 10.3969/gab.030.000513
    [14]
    Tuskan G A, Gunter L E, Yang Z K, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa[J]. Canadian Journal of Forest Research, 2004, 34: 85−93. doi: 10.1139/x03-283
    [15]
    Gur-Arie R, Cohen C J, Eitan Y, et al. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism[J]. Genome Research, 2000, 10(1): 62−71.
    [16]
    阎毛毛, 戴晓港, 李淑娴, 等. 松树、杨树及桉树表达基因序列微卫星比对分析[J]. 基因组学与应用生物学, 2011, 30(1):103−109. doi: 10.3969/gab.030.000103

    Yan M M, Dai X G, Li S X, et al. Sequence analysis and comparison of EST-SSRs in pine, poplar and Eucalyptus[J]. Genomics and Applied Biology, 2011, 30(1): 103−109. doi: 10.3969/gab.030.000103
    [17]
    Weber J L. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms[J]. Genomics, 1990, 7: 524−530. doi: 10.1016/0888-7543(90)90195-Z
    [18]
    Botsein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3): 314−331.
    [19]
    Luo X, Gao S Y, Hao Z X, et al. Analysis of genetic structure in a large sample of pomegranate (Punica granatum L.) using fluorescent SSR markers[J]. The Journal of Horticultural Science and Biotechnology, 2018, 93(6): 659−665. doi: 10.1080/14620316.2018.1432994
    [20]
    麻丽颖, 孔德仓, 刘华波, 等. 36份枣品种SSR指纹图谱的构建[J]. 园艺学报, 2012, 39(4):647−654.

    Ma L Y, Kong D C, Liu H B, et al. Construction of SSR fingerprint on 36 Chinese jujube cultivars[J]. Acta Horticulturae Sinica, 2012, 39(4): 647−654.

Catalog

    Article views (3082) PDF downloads (93) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return