• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Guo-jun, LI Yun, XU Zhao-he, SUN Peng, SUN Yu-han, HUANG Lu-jun. Morphology and leaf nutrition of introduced Robinia pseudoacacia clones[J]. Journal of Beijing Forestry University, 2012, 34(2): 52-56.
Citation: ZHANG Guo-jun, LI Yun, XU Zhao-he, SUN Peng, SUN Yu-han, HUANG Lu-jun. Morphology and leaf nutrition of introduced Robinia pseudoacacia clones[J]. Journal of Beijing Forestry University, 2012, 34(2): 52-56.

Morphology and leaf nutrition of introduced Robinia pseudoacacia clones

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Published Date: March 29, 2012
  • Morphological characteristics, rooting ability, growth and leaf nutrition at age 3 years were studied on 13 clones of Robinia pseudoacacia, of which 2 were from China (2N and 3-I), 2 from Hungary (H1 and H2) and 9 from Korea. There were significant differences in growth and morphological characteristics among clones, but not in the contents of crude protein and crude fiber in the leaves (P0.05). Clones B and G recorded the fastest height growth and basal diameter, while clone H1 was the slowest. Clone H2 had the largest leaflets, three times as large as other clones, but K4 had the heaviest dry weight per 100 leaflets because it had the thickest leaves. The 13 clones can be divided into four classes (1-3,13-17, 15-23, 21-25) by the number of leaflets per compound leaf. There were significant differences in the thorn size; H2, with the largest leaflets, had the smallest thorns. All clones produced roots; clones 2N, K5 and B had more number of adventitious roots, while clones K3, K4 and H1 had less. Correlation between content of crude protein and length × width of leaf was positive (P0.05), while correlation of content of crude protein with number of leaflets per compound leaf, rachis length of compound leaf and thorn length were negative (P0.01). Plant height and basal diameter were positively correlated with each other (P0.01) and negatively correlated with base width of thorn (P0.05).
  • Related Articles

    [1]He Mingxia, Huang Xueman, You Yeming, Wang Bo, Tong Hui, Yang Xinran, Ming Angang, Zhao Lijun, Luan Junwei. Regulatory mechanism of root-mycelial-microorganism interactions on soil phosphorus transformation of Pinus massoniana plantation under mixed renovation[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240322
    [2]Qin Shaowei, Zhang Jing, Wang Yile, Xu Yuhang, Zhou Chunhan, Chen Keyu, Ji Baoming. Influence of arbuscular mycorrhizal fungi from two temperate grassland types on Medicago sativa seedling growth in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 53-61. DOI: 10.12171/j.1000-1522.20240213
    [3]Zhao Jiaqi, Fang Jing, Tan Mingtao, Wu Shuai, Ren Yingjie, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungal colonization on Populus pseudo-cathayana × P. deltoides resistance to Lymantria dispar larvae[J]. Journal of Beijing Forestry University, 2024, 46(3): 53-59. DOI: 10.12171/j.1000-1522.20220144
    [4]Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. DOI: 10.12171/j.1000-1522.20200172
    [5]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [6]DU Rui, ZHENG Hong-juan, JIA Gui-xia. Seedling cultivation of Picea pungens with mycorrhizal fungi.[J]. Journal of Beijing Forestry University, 2012, 34(1): 70-74.
    [7]HU Tao, LI Lu-bin, YANG Kai, TANG Zheng, LIU Zhen-jing, ZHUANG Cai-yun, PENG Zhen-hua. Isolation and identification of Cymbidium mycorrhizae of China.[J]. Journal of Beijing Forestry University, 2008, 30(3): 132-135.
    [8]ZHANG Chun-ying, , DAI Si-lan. Research advances on ericoid mycorrhiza.[J]. Journal of Beijing Forestry University, 2008, 30(3): 113-119.
    [9]ZHANG Ru-qin, TANG Ming, ZHANG Feng-feng, HUANG Ji-chuan. Influences of pH and heavy metals on the growth of three ectomycorrhizal fungi.[J]. Journal of Beijing Forestry University, 2008, 30(2): 113-118.
    [10]JIN Hui, XU Zhong-xiang, CHEN Hui, HAN Su-fen. Localization and changes of activity of acid phosphatase in mycorhiza of Cymbidium hookerianum[J]. Journal of Beijing Forestry University, 2007, 29(4): 156-160. DOI: 10.13332/j.1000-1522.2007.04.031
  • Cited by

    Periodical cited type(14)

    1. 刘小龙,张子东,薛志方,曾誓杰,刘彤. 额尔齐斯河支流哈巴河河谷林植物多样性特征. 植物资源与环境学报. 2024(03): 89-96 .
    2. 邓铭江. 金山南面大河流(上)——额尔齐斯河生态保护与水文过程耦合机理研究. 中国水利. 2023(05): 67-72 .
    3. 邓铭江. 金山南面大河流(下)——额尔齐斯河生态调度和生态修复研究与实践. 中国水利. 2023(17): 67-72 .
    4. 李卉,朱彤彤,刘侦海,李霞,王绍强,王小博,刘媛媛. 东南亚沿海与内陆植被对洪水事件响应的稳定性差异. 生态学报. 2022(16): 6745-6757 .
    5. 宋经纬,徐子然,陈家鑫,徐庆华. 新疆额尔齐斯河流域杨树天然林的养分含量分析. 干旱区研究. 2021(05): 1429-1435 .
    6. 杨帆,林涛,徐海量,凌红波,刘星宏. 新疆科克苏湿地草本植物群落分类及其与环境的关系. 草业科学. 2021(12): 2340-2349 .
    7. 杨海乐,徐福军,叶勒波拉提·托流汉,程传飞,李琴,金斌松,杨柳,陈家宽. 构建新疆阿尔泰两河流域生态保护体系:保护困境与建设策略. 中国人口·资源与环境. 2016(S1): 260-265 .
    8. 高润梅,郭晋平,郭跃东,张东旭. 文峪河上游河岸林的群落结构与多样性特征. 林业科学研究. 2011(01): 74-81 .
    9. 白志强,刘华,张新平,刘端,郭仲军. 新疆额尔齐斯河流域杨树幼苗天然更新影响因子分析. 西北林学院学报. 2011(01): 98-102 .
    10. 张东旭,郭晋平. 我国河岸带生态学的研究进展. 山西林业科技. 2010(04): 26-30 .
    11. 梅宇,马鸣,胡宝文,Dusan Brinkhuizen,Tamas Szekely. 新疆北部白冠攀雀的巢与巢址选择. 动物学研究. 2009(05): 565-570 .
    12. 井学辉,臧润国,曹磊,郭仲军,陈东立. 新疆额尔齐斯河流域北屯段景观动态. 林业科学. 2009(04): 7-13 .
    13. 吴晓成,张秋良,臧润国,雷庆哲. 额尔齐斯河天然杨树林叶面积指数及比叶面积的研究. 西北林学院学报. 2009(04): 10-15 .
    14. 井学辉,臧润国,曹磊,陈东立,郭仲军. 新疆额尔齐斯河流域北屯段景观格局及破碎化. 林业科学. 2008(03): 21-28 .

    Other cited types(13)

Catalog

    Article views (1914) PDF downloads (48) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return