Citation: | TANG Hui, KONG De-xin, LIANG Hui-ling, WANG Man-lian, SHI Yan-cai, WEI Ji-qing.. Rapid assessment of infrared spectroscopy and chemometrics of Illicium difengpi from different regions by fourier transform[J]. Journal of Beijing Forestry University, 2012, 34(3): 137-141. |
In order to rapidly select the germplasm with high medical compositions as well as assessing the quality of Illicium difengpi from different regions, combined with the chemometrics software such as principal componential analysis model(PCA) and soft independent modeling of class analogy (SIMCA)), the fourier transform infrared spectroscopy(FTIR) was utilized to investigate I. difengpi from different regions. Meanwhile, extracting loading factors from PCA model were taken to analyze the differences of chemical composition among determined samples. The results were listed as follows: firstly, when the data of principal analysis model were preprocessed by standard normal variate(SNV),the first three principal components could account for 87% variance information in fingerprint and the samples were formed into 7 different categories in principal component space. Secondly, the identification model of SIMCA could be successfully applied to predict unknown samples from different regions and the recognition rate was up to 100%. Last but not lest, the loading factor analysis demonstrated that the content of difengpin,magnolol, aromatic mixture from A, B and E was higher than other regions among identified samples. In addition, the differences of aromatic mixture of I. difengpi mainly embodied in content difference of quercetin among determined samples in different regions.
[1] | Tang Yan, Zhao Runan, Ren Gang, Cao Fuliang, Zhu Zunling. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23-32. DOI: 10.12171/j.1000-1522.20200103 |
[2] | Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024 |
[3] | Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122 |
[4] | Li Cong, Lu Mei, Ren Yulian, Du Fan, Tao Hai, Yang Luoping, Wang Dongxu. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63-73. DOI: 10.12171/j.1000-1522.20200252 |
[5] | Wang Fengjuan, Tong Xinyu, Xia Xiaoyu, Fu Qun, Guo Qingqi. Effects of simulated different cooking temperatures on the quality of Korean pine seed oil and principal component analysis[J]. Journal of Beijing Forestry University, 2019, 41(11): 116-124. DOI: 10.13332/j.1000-1522.20190115 |
[6] | Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361 |
[7] | ZHANG Yi-zhuo, SU Yao-wen, LI Chao, MEN Hong-sheng.. Analysis of MOR and MOE prediction model of Quercus mongolica wood by near infrared spectroscopy.[J]. Journal of Beijing Forestry University, 2016, 38(8): 99-105. DOI: 10.13332/j.1000-1522.20150505 |
[8] | CHENG Shi-chao, LI Dan, ZHANG Qiu-hui, HUANG An-min. Comparative analysis of five kinds of rosewood by infrared spectra[J]. Journal of Beijing Forestry University, 2016, 38(1): 118-124. DOI: 10.13332/j.1000--1522.20150181 |
[9] | AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164 |
[10] | MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125. |